

 Navigation

 	
 index

 	
 next |

 	Nmag 0.2 documentation

1NMAG User Manual (v0.2)

	Authors:	Hans Fangohr, Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, Jacek Generowicz, Andreas Knittel, Michael Walter, Maximilian Albert

	Licence:	GNU General Public License (GPL) version 2 [http://www.gnu.org/licenses/gpl2.txt]

	Version:	0.2

	Home page:	http://nmag.soton.ac.uk

[image: _images/nmaglogo500.png]

	1. Introduction
	1.1. |Nmag| Philosophy

	1.2. How to read this document

	1.3. Development status

	1.4. Mailing list
	1.4.1. nmag-announce

	1.4.2. nmag-users

	1.5. Support

	1.6. License and Disclaimer

	2. Guided Tour
	2.1. Example: Demag field in uniformly magnetised sphere
	2.1.1. Importing nmag

	2.1.2. Creating the simulation object

	2.1.3. Defining (magnetic) materials

	2.1.4. Loading the mesh

	2.1.5. Setting the initial magnetisation

	2.1.6. Setting the external field

	2.1.7. Extracting and saving data

	2.2. Example 2: Computing the time development of a system
	2.2.1. Mesh generation

	2.2.2. The simulation

	2.2.3. Analysing the data

	2.2.4. Higher level functions

	2.2.5. “Relaxing” the system

	2.2.6. “Relaxing” the system faster

	2.2.7. Decreasing execution time

	2.3. Example: Simple hysteresis loop
	2.3.1. Hysteresis simulation script

	2.3.2. Hysteresis loop computation

	2.3.3. Obtaining the hysteresis loop data

	2.3.4. Plotting the hysteresis loop with Gnuplot

	2.4. Example: Hysteresis loop for Stoner-Wohlfarth particle
	2.4.1. Plotting the hysteresis loop

	2.5. Example: Hysteresis loop for thin disk
	2.5.1. Thin disk hysteresis loop

	2.6. Example: Vortex formation and propagation in disk

	2.7. Example: Manipulating magnetisation
	2.7.1. Modifying the magnetisation

	2.8. Example: IPython

	2.9. Example: Pinning Magnetisation
	2.9.1. Pinning simulation script

	2.9.2. Pinning magnetisation

	2.9.3. Visualisation

	2.10. Example: Uniaxial anisotropy
	2.10.1. Uniaxial anisotropy simulation script

	2.10.2. Visualization

	2.10.3. Comparison

	2.11. Example: Cubic Anisotropy
	2.11.1. Cubic anisotropy simulation script

	2.11.2. Analyzing the result

	2.12. Example: Arbitrary Anisotropy
	2.12.1. Arbitrary anisotropy simulation script

	2.12.2. The result

	2.13. Restart example
	2.13.1. Saving the state of the simulation

	2.13.2. Starting and restarting the simulation

	2.14. Applying a field that changes both in time and in space
	2.14.1. Idea: pass simulation object to field-setting function

	2.14.2. Complete example: simple moving write-head example

	2.15. Example: two different magnetic materials

	2.16. Example: Larmor precession

	2.17. Example: 1D periodicity
	2.17.1. Introduction periodic boundary conditions (“macro geometry”)

	2.17.2. 1d example

	2.18. Example: 2D periodicity

	2.19. Example: Spin-waves in periodic system
	2.19.1. Relaxation script

	2.19.2. Visualising the magnetisation evolution

	2.20. Example: post processing of saved field data

	2.21. Example: Spin transfer torque (Zhang-Li model)
	2.21.1. Current-driven motion of a vortex in a thin film

	2.21.2. Part I: Relaxation

	2.21.3. Part II: Current driven dynamics

	2.21.4. Standard problem

	2.22. Example: Current-driven magnetisation precession in nanopillars
	2.22.1. Two simulations in one single script

	2.22.2. Results: precession of the magnetisation

	2.23. Mesh distortion for edge roughness simulation
	2.23.1. Example

	2.23.2. Details and command line options

	2.24. Compression of the Boundary Element Matrix using HLib
	2.24.1. Hierarchical Matrices in Micromagnetism

	2.24.2. Installation of HLib

	2.24.3. Testing the HLib BEM Matrix compression

	2.24.4. Using HLib example 1: Demagnetisation Field of a Sphere

	2.24.5. Using HLib Example 2: Thin Films

	2.24.6. HLib and MPI

	2.25. Example: Calculation of dispersion curves
	2.25.1. The system: thesystem.py

	2.25.2. Part I: relaxation.py

	2.25.3. Part II: dynamics.py

	2.25.4. Postprocessing the data

	2.26. Example: Timestepper tolerances
	2.26.1. Hysteris loop calculation not converging? A word of warning ...

	2.27. Example: Parallel execution (MPI)
	2.27.1. Using mpich2

	2.27.2. Using mpich1

	2.27.3. Visualising the partition of the mesh

	2.27.4. Performance

	2.28. Restarting MPI runs

	2.29. More than one magnetic material, exchange coupled

	3. Background
	3.1. Architecture overview

	3.2. The |Nsim| library

	3.3. Fields and subfields
	3.3.1. Field

	3.3.2. Subfield

	3.4. Fields and Subfields in Nmag
	3.4.1. Example: one magnetic material

	3.4.2. Example: two magnetic materials

	3.4.3. Obtaining and setting subfield data

	3.4.4. Primary and secondary fields

	3.5. Mesh
	3.5.1. Node

	3.5.2. node id

	3.5.3. node position

	3.6. Site

	3.7. SI object
	3.7.1. Library of useful si constants

	3.8. Terms
	3.8.1. Stage, Step, iteration, time, etc.

	3.8.2. Some geek-talk deciphered

	3.9. Solvers and tolerance settings

	3.10. The equation of motion: the Landau-Lifshitz-Gilbert equation

	4. Command reference
	4.1. Command line options

	5. Finite element mesh generation
	5.1. Nmesh file format
	5.1.1. Ascii nmesh

	5.1.2. Hdf5 nmesh

	5.2. mesh file size

	6. Executables
	6.1. ncol

	6.2. nmagpp
	6.2.1. Inspecting the content

	6.2.2. Dumping data

	6.2.3. Range of data to be processed

	6.2.4. Conversion to vtk file

	6.2.5. Other features

	6.3. nmeshpp
	6.3.1. General information (--info)

	6.3.2. Memory requirements of boundary element matrix

	6.3.3. Inspecting the quality of a mesh

	6.3.4. Histogram of edge lengths

	6.4. Convert nmesh.h5 to nmesh file (and back)
	6.4.1. nmeshmirror

	6.4.2. nmeshsort

	6.5. nmeshimport

	6.6. nsim

	6.7. nsimversion

	7. Files and file names
	7.1. mesh files (.nmesh, .nmesh.h5)

	7.2. Simulation scripts (.py)

	7.3. Data files (.ndt)

	7.4. Data files (.h5)

	7.5. File names for data files

	7.6. File names for log files

	8. Frequently Asked Questions
	8.1. What is the difference between the OOMMF and |nmag| approach?

	8.2. ... So, this means the major difference is “cubes” vs. “tetrahedra”?

	8.3. Why do you have your own Python interpreter (=nsim)?

	8.4. What is nsim - I thought the package is called |nmag|?

	8.5. How fast is nmag in comparison to magpar?

	8.6. How do I start a time-consuming nmag run in the background?

	8.7. nmag claims to support MPI. So, can I run simulation jobs on multiple processors?

	8.8. How should I cite nmag?

	8.9. Why can you not use the step as a unique identifier?

	8.10. How to generate a mesh with more than one region using GMSH?

	8.11. Can I run more than one simulation in one directory?

	8.12. Can I save data to an arbitrary directory?
	8.12.1. Do you really need to do so?

	8.12.2. How to save data to a different directory

	8.13. How to check the convergence of a simulation

	8.14. What to do in case of convergence problems

	8.15. How to visualise the difference between two fields defined over the same mesh

	8.16. How to re-sample data from a saved h5 file

	8.17. Notes on using GMSH to create a family of related meshes

	9. Useful tools
	9.1. vtk

	9.2. MayaVi

	9.3. NumPy

	10. Contact

	11. Mini tutorial micromagnetic modelling
	11.1. Introduction micromagnetic modelling

	11.2. What is better: finite differences or finite elements?

	11.3. What size of the cells (FD) and tetrahedra (FE) should I choose?
	11.3.1. Exchange length

	11.3.2. Further reading

	11.4. Micromagnetic packages

	11.5. Summary

	12. Acknowledgements

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

1. Introduction

|Nmag| is a flexible finite element micromagnetic simulation
package with an user interface based on the
Python_ programming language.

If you use Nmag in your published work, please cite:

	Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, and Hans
Fangohr. A Systematic Approach to Multiphysics Extensions of
Finite-Element-Based Micromagnetic Simulations: Nmag, in IEEE
Transactions on Magnetics, 43, 6, 2896-2898 (2007). (Available online [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4202717])

1.1. |Nmag| Philosophy

Many specialized simulation codes used in research today
consist of a highly specialized core application which initially was
written to simulate the behaviour of some very specific
system. Often, the core application then evolved into a more broadly
applicable tool through the introduction of additional
parameters. Some simulation codes reach a point where it becomes
evident that they need an amount of flexibility that can only be
provided by including some script programming capabilities.

The approach underlying |Nmag| turns this very common pattern of
software evolution (which we also have seen in web browsers, CAD
software, word processors, etc) on its head: rather than gradually
providing more and more flexibility in an ad-hoc manner through adding
configuration parameters, slowly evolving into an extensive
specialized programming language, |Nmag| starts out as an extension to
a widely used programming language (Python_) from which it gains all its
flexibility and evolves towards more specialized notions to
conveniently define and study the properties of very specific physical
systems [1].

The main advantage of this approach is two-fold: first, we do not
gradually evolve another ad-hoc (and potentially badly implemented)
special purpose programming language. Second, by drawing upon the
capabilities of a well supported existing framework for flexibility,
we get a lot of additional power for free: the user can employ readily
available and well supported Python libraries for tasks such as data
post-processing and analysis, e.g. generating images for web pages
etc. In addition to this, some users may benefit from the capability
to use |Nmag| interactively from a command prompt, which can be very
helpful during the development phase of an involved simulation script [2].

The disadvantage is of course that a novice user may be confronted
with much more freedom than he can handle. We try to cope with this
issue by providing a collection of example scripts (in the Guided Tour) for the most common applications that only need very slight
modification for basic use (e.g. changing of the mesh filename or
material parameters).

At present, |Nmag| is based on the Python programming language. This
seems to be a somewhat reasonable choice at present, as Python is
especially friendly towards casual users who do not want to be forced
to first become expert programmers before they can produce any useful
results. Furthermore, Python is quite widespread and widely supported
these days.

	[1]	Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon,, Hans Fangohr, A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag, IEEE Transactions on Magnetics 43, 6, 2896-2898 (2007), online at http://eprints.soton.ac.uk/46725/

	[2]	Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, Andreas Knittel, Hans Fangohr, Parallel execution and scriptability in micromagnetic simulations, Journal of Applied Physics 105, 07D527 (2009), online at http://link.aip.org/link/?JAPIAU/105/07D527/1

1.2. How to read this document

We suggest you follow the Guided Tour through a number of examples
to get a quick overview of what |nmag| looks like in real use, and to
see examples that can be used to carry out typical simulations. We
provide a number of skeletons that are easily adapted to specific
systems which show how to compute hysteresis loops, do energy
minimisation, or compute time evolution.

The Command reference section explains the relevant commands
provided by |Nmag| in full detail. This should be especially useful to
advanced users who want to design sophisticated simulation scripts in
Python.

If you are new to micromagnetic modelling, you may want to start with
the Mini tutorial micromagnetic modelling.

1.3. Development status

The first Nmag release was late in 2007, and many bugs have been fixed
since then. Having said that, without doubt there are bugs left in the
system, and there is a long list of wishes for extra features,
changes, improvements.

Currently, there is no significant amount of funding or man power
available to support Nmag users or develop it further. The software should
thus be seen to be provided as is.

Should you use Nmag for your work, please cite

	Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, and Hans Fangohr,
A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag,
IEEE Transactions on Magnetics 43, 6, 2896-2898 (2007),
online: preprint [http://eprints.soton.ac.uk/46725/1/Fisc_07.pdf] and http://dx.doi.org/10.1109/TMAG.2007.893843

to demonstrate the value of open-source infrastructure in the
community. (We should also cite the corresponding recommended
publications when using OOMMF, Magpar, Mumax, MicroMagnum etc).

1.4. Mailing list

If you are using |nmag|, we recommend that you subscribe to at least
one of these following two lists. If you have a question about how to use the software, we
suggest you subscribe to nmag-users, and post it there.

1.4.1. nmag-announce

nmag-announce@lists.soton.ac.uk is a low traffic read-only mailing
list which will broadcast updates of nmag and any other relevant news.

To subscribe to this list, send an email to
nmag-announce-request@lists.soton.ac.uk with an empty
subject and the word subscribe in the body of the email.

The archives can be found and searched at
http://groups.google.com/group/nmag-announce.

1.4.2. nmag-users

nmag-users@lists.soton.ac.uk is a mailing list to discuss the use of
nmag, and for users to support users. Any announcements to nmag-announce will also be sent to this
mailing list.

To subscribe to this list, send an email to
nmag-users-request@lists.soton.ac.uk with an empty subject
and the word subscribe in the body of the email.

Information about how to unsubscribe are provided with the welcome
message once you have subscribed.

The archives can be found and searched at
http://groups.google.com/group/nmag-users.

1.5. Support

Support will be provided within our limited resources (which may be None). After
consulting the manual, please feel free to use the Mailing list
nmag-users@lists.soton.ac.uk to seek advice, or contact the
nmag team directly.

1.6. License and Disclaimer

This software was developed at the University of Southampton, United
Kingdom. It is released under the GNU General Public License (GPL_) as
published by the Free Software Foundation; either version 2, or (at
your option) any later version.

|Nmag| is an experimental system. Neither the University of
Southampton nor the authors assume any responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, or any other characteristic.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

2. Guided Tour

We present a number of worked out examples that are explained in
detail and should cover most of the usual applications. (You may also
want to check the Frequently Asked Questions.)

	2.1. Example: Demag field in uniformly magnetised sphere
	2.1.1. Importing nmag

	2.1.2. Creating the simulation object

	2.1.3. Defining (magnetic) materials

	2.1.4. Loading the mesh

	2.1.5. Setting the initial magnetisation

	2.1.6. Setting the external field

	2.1.7. Extracting and saving data
	2.1.7.1. Saving averaged data

	2.1.7.2. Extracting arbitrary data from the running program

	2.1.7.3. Saving spatially resolved data

	2.2. Example 2: Computing the time development of a system
	2.2.1. Mesh generation

	2.2.2. The simulation

	2.2.3. Analysing the data
	2.2.3.1. Time dependent averages

	2.2.3.2. Comparison with OOMMF and Magpar

	2.2.3.3. Spatially resolved fields

	2.2.4. Higher level functions

	2.2.5. “Relaxing” the system

	2.2.6. “Relaxing” the system faster

	2.2.7. Decreasing execution time

	2.3. Example: Simple hysteresis loop
	2.3.1. Hysteresis simulation script

	2.3.2. Hysteresis loop computation

	2.3.3. Obtaining the hysteresis loop data

	2.3.4. Plotting the hysteresis loop with Gnuplot

	2.4. Example: Hysteresis loop for Stoner-Wohlfarth particle
	2.4.1. Plotting the hysteresis loop

	2.5. Example: Hysteresis loop for thin disk
	2.5.1. Thin disk hysteresis loop

	2.6. Example: Vortex formation and propagation in disk

	2.7. Example: Manipulating magnetisation
	2.7.1. Modifying the magnetisation

	2.8. Example: IPython

	2.9. Example: Pinning Magnetisation
	2.9.1. Pinning simulation script

	2.9.2. Pinning magnetisation

	2.9.3. Visualisation

	2.10. Example: Uniaxial anisotropy
	2.10.1. Uniaxial anisotropy simulation script

	2.10.2. Visualization

	2.10.3. Comparison

	2.11. Example: Cubic Anisotropy
	2.11.1. Cubic anisotropy simulation script

	2.11.2. Analyzing the result

	2.12. Example: Arbitrary Anisotropy
	2.12.1. Arbitrary anisotropy simulation script

	2.12.2. The result

	2.13. Restart example
	2.13.1. Saving the state of the simulation

	2.13.2. Starting and restarting the simulation

	2.14. Applying a field that changes both in time and in space
	2.14.1. Idea: pass simulation object to field-setting function

	2.14.2. Complete example: simple moving write-head example

	2.15. Example: two different magnetic materials

	2.16. Example: Larmor precession

	2.17. Example: 1D periodicity
	2.17.1. Introduction periodic boundary conditions (“macro geometry”)

	2.17.2. 1d example

	2.18. Example: 2D periodicity

	2.19. Example: Spin-waves in periodic system
	2.19.1. Relaxation script

	2.19.2. Visualising the magnetisation evolution

	2.20. Example: post processing of saved field data

	2.21. Example: Spin transfer torque (Zhang-Li model)
	2.21.1. Current-driven motion of a vortex in a thin film

	2.21.2. Part I: Relaxation

	2.21.3. Part II: Current driven dynamics

	2.21.4. Standard problem

	2.22. Example: Current-driven magnetisation precession in nanopillars
	2.22.1. Two simulations in one single script

	2.22.2. Results: precession of the magnetisation

	2.23. Mesh distortion for edge roughness simulation
	2.23.1. Example

	2.23.2. Details and command line options

	2.24. Compression of the Boundary Element Matrix using HLib
	2.24.1. Hierarchical Matrices in Micromagnetism

	2.24.2. Installation of HLib

	2.24.3. Testing the HLib BEM Matrix compression

	2.24.4. Using HLib example 1: Demagnetisation Field of a Sphere
	2.24.4.1. Using HLib with default parameters

	2.24.4.2. HLib Memory usage

	2.24.4.3. Changing the Parameters of HLib

	2.24.5. Using HLib Example 2: Thin Films

	2.24.6. HLib and MPI

	2.25. Example: Calculation of dispersion curves
	2.25.1. The system: thesystem.py

	2.25.2. Part I: relaxation.py

	2.25.3. Part II: dynamics.py

	2.25.4. Postprocessing the data

	2.26. Example: Timestepper tolerances
	2.26.1. Hysteris loop calculation not converging? A word of warning ...

	2.27. Example: Parallel execution (MPI)
	2.27.1. Using mpich2
	2.27.1.1. Testing that nsim executes in parallel

	2.27.2. Using mpich1

	2.27.3. Visualising the partition of the mesh

	2.27.4. Performance

	2.28. Restarting MPI runs

	2.29. More than one magnetic material, exchange coupled

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.1. Example: Demag field in uniformly magnetised sphere

This is the most basic example that computes the demagnetisation field
in an uniformly magnetised sphere. For this simple system, the exact
result is known analytically: the demag field vector has to be equal
to minus one-third of the magnetisation vector, everywhere.

When using finite element calculations, a crucial (and non-trivial)
part of the work is the finite element mesh generation. We provide
a very small mesh for this example (sphere1.nmesh.h5) which was generated with `Netgen`_
(from this geometry file). This gives us
a sphere of radius 10nm.

[image: ../_images/spheremesh.png]
We can then use the following |nmag| script sphere1.py:

import nmag
from nmag import SI

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name = 'Py',
 Ms = SI(1e6, 'A/m'),
 exchange_coupling = SI(13.0e-12, 'J/m'))

load mesh
sim.load_mesh('sphere1.nmesh.h5',
 [('sphere', Py)],
 unit_length = SI(1e-9, 'm'))

set initial magnetisation
sim.set_m([1,0,0])

set external field
sim.set_H_ext([0,0,0], SI('A/m'))

Save and display data in a variety of ways
sim.save_data(fields='all') # save all fields spatially resolved
 # together with average data

sample demag field through sphere
for i in range(-10,11):
 x = i*1e-9 #position in metres
 H_demag = sim.probe_subfield_siv('H_demag', [x,0,0])
 print "x =", x, ": H_demag = ", H_demag

To execute this script, we have to give its name to the nsim
executable, for example (on linux):

$ nsim sphere1.py

Some simulations produce output files which nsim will refuse to
overwrite when run for a second time. The rationale is that big
simulations may have to run for a long time and so, there should be a
safeguard against accidental destruction of data.

In order to re-run a simulation, removing all old output data files,
the extra option --clean should be given, as in:

$ nsim sphere1.py --clean

Let us discuss the sphere1.py script step by step.

2.1.1. Importing nmag

First we need to import the nmag module, and any subpackages of nmag
that we want to use. (In this basic example, this is just the SI
module for dimensionful physical quantities).

import nmag
from nmag import SI

2.1.2. Creating the simulation object

Next, we need to create a simulation object. This will contain and
provide information about our physical system.

sim = nmag.Simulation()

2.1.3. Defining (magnetic) materials

After importing the nmag module into Python’s workspace and creating
the simulation object sim, we need to define a material using
nmag.MagMaterial. We give it a name (as a Python string) which in
this case we choose to be "Py" (a common abbreviation for
PermAlloy) and we assign a saturation magnetisation and an exchange
coupling strength.

Py = nmag.MagMaterial(name = 'Py',
 Ms = SI(1e6, 'A/m'),
 exchange_coupling = SI(13.0e-12, 'J/m'))

The name of the material is important, as we may want to simulate
systems made up of multiple different materials, and the material name
will be used as a postfix to the name of some Fields and subfields.
The output files will also use that name to label output data. Names
must be alphanumeric (i.e. formed exclusively out of the characters in
the set 0-9_a-zA-Z) here.

Rather than representing dimensionful physical quantities as numbers,
nmag uses a special object class, the “SI object”. The underlying
rationale is that this allows automated detection of mismatches of
physical dimensions. If some physical parameter is given to nmag in a
dimension different from the expected one, nmag will detect this and
report an error. Also, any nmag output [e.g. a three-dimensional VTK
visualisation file] will provide a sufficient amount of contextual
information to clarify the physical meaning (i.e. dimensions) of
numerical data.

We thus express the saturation magnetisation in Ampere per meter (Ms
= SI(1e6,"A/m")) and the exchange coupling constant (often called A
in micromagnetism) in Joules per meter (exchange_coupling =
SI(13.0e-12, "J/m")). (Note that these are not the true physical
parameters of PermAlloy, but have been chosen ad hoc for the sake
of providing a simple example!)

2.1.4. Loading the mesh

The next step is to load the mesh.

sim.load_mesh('sphere1.nmesh.h5',
 [('sphere', Py)],
 unit_length = SI(1e-9, 'm'))

The first argument is the file name ("sphere1.nmesh.h5"). The
second argument is a list of tuples which describe the domains (also
called regions) within the mesh. In this example we have a one-element
list containing the 2-tuple ("sphere", Py). The left element of
this pair, "sphere", is a string (of the user’s choice) and this
is the name given to mesh region 1 (i.e. the space occupied by all
simplices that have the region id 1 in the mesh file).

[This information is currently only used for debugging purposes (such
as when printing the simulation object).]

The second part of the tuple is the MagMaterial object that has
been created in Defining (magnetic) materials and bound to the
variable Py. This object determines the material properties of the
material in this domain; in this example, we have specified the
properties of PermAlloy.

The third argument to load_mesh is an SI object which defines what
physical distance should be associated with the length 1.0 as given in
the mesh file. In this example, the mesh has been created in
nanometers, i.e. the distance 1.0 in the mesh file should correspond
to 1 nanometer in the real world. We thus use a SI object representing
1 nm.

2.1.5. Setting the initial magnetisation

To set the initial magnetisation, we use the set_m method.

sim.set_m([1,0,0])

The field m describes the direction of magnetisation (as a
field of normalised vectors) whereas the
field M contains the magnetisation with its proper magnitude.
So, |M| is the saturation magnetisation (in Amperes per meter),
whereas m is dimensionless with |m|=1.0. There are different
ways to set a particular magnetisation, in the simplest case of a
homogeneously magnetised body, it is sufficient to provide the
magnetisation vector. So, in this example, we provide a unit vector
pointing in positive x-direction. (We could provide a vector with
non-normalised magnitude, which would be normalised
automatically. This is convenient for, say, setting an initial
magnetisation in the x-y-plane with a 45 degree angle towards
the x axis by specifying [1,1,0]).

2.1.6. Setting the external field

We can set the external field using the set_H_ext command

sim.set_H_ext([0,0,0], SI('A/m'))

In contrast to set_m, this method takes two arguments. The first
defines numerical values for the direction and magnitude of the
external field. The second determines the meaning of these numerical
values using an SI object. Suppose we would like an external field of
1e6 A/m acting in the y-direction, then the command would read:
sim.set_H_ext([0,1e6,0],SI(1,"A/m")). However, we could also use
sim.set_H_ext([0,1,0],SI(1e6,"A/m")).

The default value for the external field is [0,0,0] A/m, so for this
example, we could have omitted the set_H_ext command altogether.

2.1.7. Extracting and saving data

We have three different ways of extracting data from the simulation:

	saving averaged values of fields (which can be analysed later)

	saving spatially resolved fields (which can be analysed later)

	extracting field values at arbitrary positions from within the
running program

In this basic example, we demonstrate the use of all three methods:

2.1.7.1. Saving averaged data

sim.save_data()

The save_data method writes (spatial) averages of all fields (see
Fields and subfields) into a text file (which will be named
sphere1_dat.ndt, see below). This file is best analysed using the
ncol tool but can also just be read with a text editor. The format
follows OOMMF’s odt file format: every row corresponds to one
snapshot of the system (see save_data).

The function can also be called with parameters to save spatially
resolved field data (see Saving spatially resolved data).

The first and second line in the data file are headers that explain
(by column) the physical quantities (and their dimensions).

The ncol tool allows to extract particular columns easily so that
these can be plotted later (useful for hysteresis loop studies). In
this example we have only one “timestep”: there only is one row of
data in this file. We will therefore discuss this in more detail in a
subsequent example.

2.1.7.2. Extracting arbitrary data from the running program

The line

H_demag = sim.probe_subfield_siv('H_demag', [x,0,0])

obtains the demagnetisation field (see Fields and Subfields in Nmag) at position (x,0,0). The suffix “_siv” to this function means
that both positions and return values will be given as SI values.

The for-loop in the program (which iterates x in the range from
-10*1e-9 to 10*1e-9 in steps of 1e-9) produces the following output

x = -1e-08 : H_demag = None
x = -9e-09 : H_demag = [-329655.76203912671, 130.62999726469423, 194.84338557811344]
x = -8e-09 : H_demag = [-329781.46587966662, 66.963624669268853, 137.47161381890737]
x = -7e-09 : H_demag = [-329838.57852402801, 181.46249265908259, 160.61298054099865]
x = -6e-09 : H_demag = [-329899.63327447395, 131.06488858715838, 71.383139326493094]
x = -5e-09 : H_demag = [-329967.79622912291, 82.209856975234786, -16.893046828024836]
x = -4e-09 : H_demag = [-329994.67306536058, 61.622521557150371, -34.433041910642359]
x = -3e-09 : H_demag = [-329997.62759666931, 23.222244635691535, -65.991127111463769]
x = -2e-09 : H_demag = [-330013.90370482224, 10.11035370824321, -61.358763616681067]
x = -1e-09 : H_demag = [-330023.50844056415, -6.9714476825652287, -54.900260456937708]
x = 0.0 : H_demag = [-330030.98847923806, -26.808832466764223, -48.465748009067141]
x = 1e-09 : H_demag = [-330062.38479507214, -38.660812022013424, -42.83439139610747]
x = 2e-09 : H_demag = [-330093.78111090627, -50.512791577262625, -37.2030347831478]
x = 3e-09 : H_demag = [-330150.72580001026, -64.552170478617398, -23.120555702674721]
x = 4e-09 : H_demag = [-330226.19050178828, -77.236085707456397, -5.5373829923226916]
x = 5e-09 : H_demag = [-330304.59300913941, -90.584413821813229, 14.090609104026118]
x = 6e-09 : H_demag = [-330380.1392610991, -115.83746059068679, 37.072085708324757]
x = 7e-09 : H_demag = [-330418.85831447819, -122.47512022500726, 62.379121138009992]
x = 8e-09 : H_demag = [-330476.40747455234, -110.84257225592108, 108.06217226524763]
x = 9e-09 : H_demag = [-330500.20126762061, -68.175725285038382, 162.46166752217249]
x = 1e-08 : H_demag = [-330517.86675206106, -24.351273685146875, 214.40344001233677]

At position -1e-8, there is no field defined (this point lies just
outside our sphere-mesh) and therefore the value None is returned.

We can see how the demagnetisation field varies slightly throughout
the sphere. The x-component is approximately a third of the
magnetisation, and the y- and z-components are close to zero (as would
be expected for a perfectly round sphere).

We mention for completeness that most fields (such as magnetisation,
exchange field, anisotropy field etc) are only defined within the
region(s) occupied by magnetic material. However, there is a special
function probe_H_demag_siv to probe the demagnetisation field
anywhere in space.

2.1.7.3. Saving spatially resolved data

The command

sim.save_data(fields='all')

will save full spatially resolved data on all fields (see Fields and subfields) for the current configuration into a file with name
sphere1_dat.h5. (It will also save the spatially averaged values
as described in Saving averaged data.) Whenever the save_data
function is called, it will write the averaged field values into the
Data files (.ndt) file. This name is, by default, based on the name of the
simulation script, but can be overridden with an optional argument to
the Simulation constructor. The data in this file are kept in some
compressed binary format (built on the `hdf5`_ standard) and can be
extracted and converted later using the nmagpp tool.

For example, we can extract the magnetisation field from this file
with the command:

$ nmagpp --dump sphere1

However, here we are interested in creating a vtk from the saved data
file for visualisation. We use:

$ nmagpp --vtk sphere1.vtk sphere1

where sphere1.vtk is the base name of the vtk file that is to be
generated.

In this manual, we use MayaVi as the visualisation tool for vtk files
but there are others available (see vtk).

Starting MayaVi with the command mayavi -d sphere1-000000.vtk will load
our simulation data. Using the pull-down menu Visualize -> Modules ->
VelocityVector will then tell MayaVi to display the magnetisation
vector field. (Likewise, we can use Visualize -> Modules -> Axes to
add a 3d coordinate system to the visualization):

[image: ../_images/sphere1_h5_m.png]
The magnetisation is pointing in positive x-direction because we
initialised the magnetisation in this orientation by issuing the
command sim.set_m([1,0,0]).

The Configure Data button in the DataVizManager section of
MayaVi’s user interface allows to select:

	a vector field and

	a scalar field

which provide the data that is used for subsequent visualisation
modules. Above, we have used the m_Py vector field.

The demagnetisation field should point in the opposite direction of
the magnetisation. However, let’s first create a colour-coded plot of
the scalar magnetic potential, phi, from which the demag field is
computed (by taking its negative gradient):

[image: ../_images/sphere1_h5_phi.png]
We first need to select phi as the data source for ‘scalar’
visualisation modules: Through clicking on the Configure Data
button in the DataVizManager section of MayaVi’s user interface, we
can select phi<A> as the data source for scalar
visualisations. (The <A> simply indicates that the units of the
potential are Ampere).

To show the scalar potential, we use the
Visualize->Module->SurfaceMap module.

We can see that the potential varies along the x-direction. The legend
at the bottom of the figure shows the colour code used. We can also
see from the legend title that the physical dimension of the potential
phi is Ampere (this is the <A>).

Unless the user specifies a particular request for physical dimensions,
the following rules apply for vtk files:

	position are given in the same coordinates as the mesh coordinates
(that is why in this example, the x, y and z axis have values going
from -10 to 10).

	all field data are given in SI units.

The next plot shows the demag field (the vectors) together with
isosurfaces of the magnetic potential:

[image: ../_images/sphere1_h5_demag.png]
It can be seen that the isosurfaces are completely flat planes
(i.e. the potential is changing only along x) and the demagnetisation
field is perpendicular to the isosurfaces. The color bar on the left
refers to the magnitude of the demagnetisation field which is
expressed in Ampere per meter, as can be seen from the label
<A/m>. (Note that all the H_demag arrows are colored red
as they have identical length.)

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.2. Example 2: Computing the time development of a system

This example computes the time development of the magnetisation in a
bar with (x,y,z) dimensions 30 nm x 30 nm x 100 nm. The initial
magnetisation is pointing in the [1,0,1] direction, i.e. 45 degrees
away from the x axis in the direction of the (long) z-axis. We first
show the simulation code and then discuss it in more detail.

2.2.1. Mesh generation

While it is down to the mesh generation software (see also Finite element mesh generation) to explain how to generate finite element
meshes, we briefly summarize the steps necessary to create a mesh for
this example in `Netgen`_, and how to convert it into an nmesh mesh.

	The finite element method requires the domain of interest to be
broken down into small regions. Such a subdivision of space is
known as a mesh or grid. We use `Netgen`_ to create this mesh.
Netgen reads a geometry file describing the
three-dimensional structure. To create the mesh used here,
we can start Netgen and load the geometry file by using the menu:
File-> Load Geometry. We then tell Netgen that we like the edge
length to be shorter than 3 by going to Mesh->Meshing Options->Mesh Size
and enter 3.0 in the max mesh-size box. Then a click on the
Generate Mesh button will generate the mesh. Finally, using
File->Export will save the mesh as a “neutral” file
(this is the default) under the name bar30_30_100.neutral.
(We provide a gzipped version of this file
for completeness.)

	This neutral file needs to be converted into a nmesh file. We do
this using the command:

$ nmeshimport --netgen bar30_30_100.neutral bar30_30_100.nmesh.h5

By providing the .h5 extension, we tell nmeshimport to write a
compressed mesh file which is significantly smaller than an ascii
file (see mesh file size).

The generated mesh looks like this:

[image: ../_images/bar30_30_100.png]
We can examine the mesh using nmeshpp to obtain information about
mesh quality, the statistical distribution of edge lengths, the
overall number of points and elements etc.

If you like to script the mesh generation starting from a Netgen geometry file and ending with the nmesh file, you could use (for the example above), the following shell commands:

netgen -geofile=bar30_30_100.geo -meshfiletype="Neutral Format" -meshfile=bar30_30_100.neutral -batchmode
nmeshimport --netgen bar30_30_100.neutral bar30_30_100.nmesh.h5

2.2.2. The simulation

Having obtained the mesh file bar30_30_100.nmesh.h5, we can use the
program bar30_30_100.py
to run the simulation:

import nmag
from nmag import SI

mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=0.5)

sim = nmag.Simulation("bar")

sim.load_mesh("bar30_30_100.nmesh.h5",
 [("Py", mat_Py)],
 unit_length=SI(1e-9,"m"))

sim.set_m([1,0,1])

dt = SI(5e-12, "s")

for i in range(0, 61):
 sim.advance_time(dt*i) #compute time development

 if i % 10 == 0: #every 10 loop iterations,
 sim.save_data(fields='all') #save averages and all
 #fields spatially resolved
 else:
 sim.save_data() #otherwise just save averages

As in Example: demag field in uniformly magnetised sphere, we start
by importing |nmag| and creating the material object.

import nmag
from nmag import SI

mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=0.5)

We set the llg_damping parameter to 0.5. As this is a
dimensionless parameter, we can pass a number. Alternatively, we may
give it as SI(0.5). (Note that in this example, we give the
appropriate physical value for the saturisation magnetisation of
PermAlloy.)

The next line creates the simulation object:

sim = nmag.Simulation("bar")

Here, we provide a name for the simulation, which is bar. This
will be used as the stem of the name of any data files that are being
written. If this name is not specified (as in Example: demag field in
uniformly magnetised sphere), it defaults to the name of the file
that contains the script (but without the .py extension).

Next, we load the mesh file, and set the initial (normalised)
magnetisation to point in the [1,0,1] direction, i.e. to have
equal magnitude in the x- and z-direction and 0 in the
y-direction.

sim.load_mesh("bar30_30_100.nmesh.h5",
 [("Py", mat_Py)],
 unit_length=SI(1e-9,"m"))

sim.set_m([1,0,1])

This vector will automatically be normalised within nmag, so that
[1,0,1] is equivalent to the normalised vector
[0.70710678,0,0.70710678].

In this example, we would like to study a dynamic process and will ask
|nmag| to compute the time development over a certain amount of time
dt. The line:

dt = SI(5e-12, "s")

simply creates a SI object which represents our timescale.

We then have a Python for-loop in which i will take integer
values ranging from 0 to 60 for subsequent iterations. All indented
lines are the body of the for-loop. (In the Python programming
language, scoping is expressed through indentation rather than braces
or other types of parentheses. Text editors such as Emacs come with
built-in support for properly indenting Python code [by pressing the
Tab key on a line to be indented].)

for i in range(0, 61):
 sim.advance_time(dt*i)

 if i % 10 == 0:
 sim.save_data(fields='all')
 else:
 sim.save_data()

In each iteration, we first call sim.advance_time(i*dt) which
instructs |nmag| to carry on time integration up to the time
i*dt.

The call to save_data will save the average data into the
bar_dat.ndt file.

The last four lines contain an if statement which is used to save
spatially resolved data every ten time steps only, and averaged data
every time step. The percent operator % computes i modulo
10. This will be 0 when i takes values 0, 10, 20, 30, ... In this
case, we call:

sim.save_data(fields='all')

which will save the (spatial) averages of all fields (going into the
bar_dat.ndt file), and the spatially resolved data for all
fields (that are saved to bar_dat.h5).

If i is not an integer multiple of 10, then the command:

sim.save_data()

is called, which only saves spatially averaged data.

2.2.3. Analysing the data

2.2.3.1. Time dependent averages

We first plot the average magnetisation vector against time. To
see what data is available, we call ncol with just the name of the
simulation (which here is bar):

$ ncol bar
 0: #time #<s> 0
 1: id <> 1
 2: step <> 0
 3: stage_time <s> 0
 4: stage_step <> 0
 5: stage <> 0
 6: E_total_Py <kg/ms^2> -0.2603465789714
 7: phi <A> 0.0002507410390772
 8: E_ext_Py <kg/ms^2> 0
 9: H_demag_0 <A/m> -263661.6680783
10: H_demag_1 <A/m> -8.218106743355
11: H_demag_2 <A/m> -77027.641984
12: dmdt_Py_0 <A/ms> -8.250904652583e+15
13: dmdt_Py_1 <A/ms> 2.333344983225e+16
14: dmdt_Py_2 <A/ms> 8.250904652583e+15
15: H_anis_Py_0 <A/m> 0
16: H_anis_Py_1 <A/m> 0
17: H_anis_Py_2 <A/m> 0
18: m_Py_0 <> 0.7071067811865
19: m_Py_1 <> 0
20: m_Py_2 <> 0.7071067811865
21: M_Py_0 <A/m> 608111.8318204
22: M_Py_1 <A/m> 0
23: M_Py_2 <A/m> 608111.8318204
24: E_anis_Py <kg/ms^2> 0
25: E_exch_Py <kg/ms^2> 5.046530179037e-17
26: rho <A/m^2> 0.03469702141876
27: H_ext_0 <A/m> 0
28: H_ext_1 <A/m> 0
29: H_ext_2 <A/m> 0
30: H_total_Py_0 <A/m> -263661.6680783
31: H_total_Py_1 <A/m> -8.218106743352
32: H_total_Py_2 <A/m> -77027.641984
33: E_demag_Py <kg/ms^2> -0.2603465789714
34: H_exch_Py_0 <A/m> 3.301942533099e-11
35: H_exch_Py_1 <A/m> 0
36: H_exch_Py_2 <A/m> 3.301942533099e-11
37: maxangle_m_Py <deg> 0
38: localtime <> 2007/08/15-11:16:19
39: unixtime <s> 1187172979.6

The meaning of the various entries is discussed in detail in section
ncol. Here, we simply note that the column indices (given by the
number at the beginning of every line) we are most interested in are:

	0 for the time,

	21 for M_Py_0 which is the x-component of the magnetisation of
the Py material,

	22 for M_Py_1 which is the y-component of the magnetisation of
the Py material, and

	23 for M_Py_2 which is the z-component of the magnetisation of
the Py material,

We can use ncol to extract this data into a file data_M.dat which
has the time for each time step in the first column and the x, y and z
component of the magnetisation in columns 2, 3 and 4, respectively:

$ ncol bar 0 21 22 23 > data_M.txt

This creates a text file data_M.txt that
can be read by other applications to create a plot.

Note, however, that the order of the entries in the ndt file is not
guaranteed, i.e. the numbers corresponding to fields may change with
different versions of the software, or different simulations (for
example, the user may add extra fields). Therefore, the recommended
approach is to directly specify the names of the columns that are to be
extracted (i.e. time M_Py_0 M_Py_1 M_Py_2):

$ ncol bar time M_Py_0 M_Py_1 M_Py_2 > data_M.txt

We use the `xmgrace`_ command:

xmgrace -nxy data_M.txt

to create the following plot (manually adding the legend and axis labels):

[image: ../_images/data_M.png]

2.2.3.2. Comparison with OOMMF and Magpar

We have carried out the same simulation with `Magpar`_ and `OOMMF`_. The
following plot shows the corresponding OOMMF-curves (as spheres)
together with |nmag|‘s results. (The Magpar curve, which is not shown
here, follows the |nmag| data very closely.)

[image: ../_images/data_M_OOMMF.png]

2.2.3.3. Spatially resolved fields

The command sim.save_data(fields='all') saves all fields into the
file bar_dat.h5 (as explained, the filename is composed of the name
of the simulation [here bar] and the extension _dat.h5). The
code bar30_30_100.py above calls the save_data command every 10
iterations. As every dt corresponds to 0.5 picoseconds, the
data hence is saved every 5 picoseconds.

We can confirm this by using the nmagpp command:

$ nmagpp --idlist bar

which produces the following output:

 id stage step time fields
 0-> 1 0 0 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
10-> 1 312 5e-11 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
20-> 1 495 1e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
30-> 1 603 1.5e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
40-> 1 678 2e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
50-> 1 726 2.5e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
60-> 1 762 3e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho

The first column is a unique identifier id for a configuration of the
system. We can use the --range argument to select entries for
further processing. The stage is only relevant for calculations of
hysteresis curves (see Example: Simple hysteresis loop). The step is the
time-stepper iteration counter for this calculation. The time is given
in seconds (<s>). (Note the 5 pico-second interval between
entries.) The stage, step and time data is provided for
convenience. What follows is a list of fields that have been saved for
each of these configurations.

We convert the first saved time step into a vtk file
with base name bar_initial.vtk using

$ nmagpp --range 0 --vtk bar_initial.vtk bar

and we also convert the last saved time step at 300 picoseconds to a
vtk file with base name bar_final.vtk using:

$ nmagpp --range 60 --vtk bar_final.vtk bar

The actual file names that are created by these two commands are
bar_initial-000000.vtk and bar_final-000060.vtk. The appended number
is the id of the saved configuration. This is useful if one wants to create vtk files for all saved configurations. For example:

$ nmagpp --vtk bar.vtk bar

will create the files:

bar-000000.vtk
bar-000010.vtk
bar-000020.vtk
bar-000030.vtk
bar-000040.vtk
bar-000050.vtk
bar-000060.vtk

Using MayaVi, we can display this data in a variety of ways. Remember
that all field values are shown in SI units by default (see nmagpp),
and positions are as provided in the mesh file. In this case,
positions are expressed in nanometers (this comes from the
unit_length=SI(1e-9,"m") expression in the sim.load_mesh()
command.

This is the initial configuration with magnetisation pointing in the
[1,0,1] direction:

[image: ../_images/bar_initial_M.png]
The “final” configuration shows that the magnetisation aligns along
the z-direction. The coloured surface shows the x-component of the
magnetisation (and the colorbar provides the scale). It can be seen
that the magnetisation at position z=100 nm goes into a flower state
to minimise the overall energy. (Note that, strictly speaking, this
system is not yet in a meta-stable state after 300 ps – but already
quite close.):

[image: ../_images/bar_final_M.png]
Because we have saved all fields (not just the magnetisation), we can
also study other properties. For example, the following image shows
the demagnetisation field as vectors (and the legend refers to the
magnitude of the vectors), as well as the magnetic scalar potential
(as a stack of isosurfaces). Because the demagnetisation field is the
(negative) gradient of the scalar potential, the vectors are
perpendicular on the isosurfaces:

[image: ../_images/bar_final_demag.png]

2.2.4. Higher level functions

We now have seen an overview over the fundamental commands used to set
up a micromagnetic simulation and demonstrate how to advance the
configuration of the system through time. In principle, this is all
one would need to know to compute hysteresis loops and carry out most
micromagnetic computations. However, there are more advanced functions
that simplify and automatise the most frequent tasks, such as
computing a hysteresis loop.

2.2.5. “Relaxing” the system

The relax command takes the current magnetisation configuration of a
simulation and computes the time development until the torque on each
mesh site is smaller than a certain threshold. This is useful for this
particular example as we do not know for how long we need to integrate
the system until it stops in a local energy minimum configuration. We
can adjust the code of this example to make use of the relax
command (modified source code):

import nmag
from nmag import SI, every, at

mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=0.5)

sim = nmag.Simulation("bar_relax")

sim.load_mesh("bar30_30_100.nmesh.h5", [("Py", mat_Py)],
 unit_length=SI(1e-9, "m"))

sim.set_m([1, 0, 1])

ps = SI(1e-12,"s")
sim.relax(save = [('averages', every('time', 5*ps)),
 ('fields', at('convergence'))])

(Note the additions to the import statement!)

The particular relax command employed here:

sim.relax(save = [('averages', every('time',5*ps)),
 ('fields', at('convergence'))])

works as follows:

The argument save = [] tells relax to save data according to
the instructions given in the form of a python list (i.e. enclosed by
square brackets). The first relax instruction is this tuple:

('averages', every('time',5*ps)

and means that the averages should be saved every 5 picoseconds.
The syntax used here breaks down into the following parts:

	'averages' is just the keyword (a string) to say that the
average data should be saved.

	every(...) is a special object which takes two parameters. They are here:
	'time' to indicate that something should be done every time a certain
amount of simulated time has passed, and

	5*ps which is the amount of time after which the data
should be saved again. This has to be a SI object, which we here
obtain by multiplying a number (5) with the SI object ps which
has been defined earlier in our example program to represent a pico-second.

	We can provide further keywords to the every object (for example
to save the data every 10 iteration steps we can use every('step', 10)).

Internally, the relax command uses the hysteresis command, so the documentation of
hysteresis should be consulted for a more detailed explanation of parameters.

The second relax instruction is:

('fields', at('convergence'))

which means that the fields should be saved at convergence,
i.e. when the relaxation process has finished and the magnetisation
has converged to its (meta)stable configuration:

	'fields' is a string that indicates that we would like to save
all the defined fields.

	at('convergence') is a special object that indicates that this
should happen exactly when the relaxation process has converged.

After running this program, we can use the ncol tool to look at
the averages saved:

$ ncol bar_relax step time

gives output which starts like this:

 0 0
 82 5e-12
120 1e-11
146 1.5e-11
176 2e-11
201 2.5e-11
227 3e-11
248 3.5e-11

Here, we see the iterations on the left and the simulated time (in
seconds) on the right. As requested, there is one data entry
(i.e. line) every 5 picoseconds.

Note that it may happen that the system saves the data not exactly at
the requested time, i.e.:

532 6.5e-11
580 7.047908066945e-11
620 7.5e-11

The middle line shows that the data has been saved when the simulated
time was approximately 7.05e-11 seconds whereas we requested 7e-11
seconds. Such small deviations are tolerated by the system to improve
performance [1].

From the data saved, we can obtain the following plot:

[image: ../_images/bar_relax_data_M.png]
In summary, the relax function is useful to obtain a meta-stable
configuration of the system. In particular, it will carry out the time
integration until the remaining torque at any point in the system has
dropped below a certain threshold.

	[1]	The time integrator (here, `Sundials`_ CVODE) would have to do an
extra step to get to the requested time. If the current time is
very close to the requested time, it will simply report this value.

2.2.6. “Relaxing” the system faster

If we are only interested in the final (meta-stable) configuration of
a run, we can switch off the precession term in the Laundau Lifshitz
and Gilbert equation. The MagMaterial definition in the following
example shows how to do this:

import nmag
from nmag import SI, every, at

mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=0.5,
 do_precession=False)

sim = nmag.Simulation("bar_relax2")

sim.load_mesh("bar30_30_100.nmesh.h5", [("Py", mat_Py)],
 unit_length=SI(1e-9, "m"))

sim.set_m([1, 0, 1])

ps = SI(1e-12,"s")
sim.relax(save = [('averages', every('time', 5*ps)),
 ('fields', at('convergence'))])

The new option is do_precession=False in the constructor of the
PermAlloy material mat_Py. As a result, there will be no
precession term in the equation of motion:

[image: ../_images/bar_relax2_data_M.png]
While the time-development of the system happens at the same time
scale as for the system with the precession term (see “Relaxing” the
system), the computation of the system without the precession is
significantly faster (for this example, we needed about 3500
iterations with the precession term and 1500 without it, and the
computation time scales similarly).

Note, that the ‘’dynamics’’ shown here are of course artificial and
only used to obtain a meta-stable physical configuration more
efficiently!

2.2.7. Decreasing execution time

Note that the execution time can generally be reduced significantly by
decreasing the tolerances for the time integrator. In short, one has
to use the set_params function (after set_m has been called).
Decreasing the requested accuracy will of course make the simulation
results less accurate but this is often acceptable. An example of how
to use the set_m function and detailed discussion of the
micromagnetic example shown in this section for a variety of tolerance
values is given in the section Example timestepper tolerances.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.3. Example: Simple hysteresis loop

This example computes the hysteresis loop of an ellipsoidal magnetic
object. We use an ellipsoid whose x,y,z semi-axes
have lengths 30 nm, 10 nm and 10 nm, respectively. (The mesh is contained
in ellipsoid.nmesh.h5
and produced with `Netgen`_ from ellipsoid.geo):

[image: ../_images/mesh2.png]
This picture has been obtained by converting the mesh to a vtk file using:

$ nmeshpp --vtk ellipsoid.nmesh.h5 mesh.vtk

and subsequent visualisation with MayaVi:

$ mayavi -d mesh.vtk -m SurfaceMap

We have further added the axes within MayaVi
(Visualize->Modules->Axes), and changed the display color from blue to
red (Double click on SurfaceMap in the selected Modules list, then
uncheck the Scalar Coloring box, click on Change Object Color
and select a suitable color).

We provide the mayavi file mesh.mv that shows the
visulisation as in the figure above. (If you want to load this file
into MayaVi, just use $ mayavi mesh.mv but make sure that
mesh.vtk is in the same directory as mayavi will need to read
this.)

2.3.1. Hysteresis simulation script

To compute the hysteresis loop for the ellipsoid, we use the
script ellipsoid.py:

import nmag
from nmag import SI, at

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

load mesh: the mesh dimensions are scaled by 0.5 nm
sim.load_mesh("ellipsoid.nmesh.h5",
 [("ellipsoid", Py)],
 unit_length=SI(1e-9,"m"))

set initial magnetisation
sim.set_m([1.,0.,0.])

Hs = nmag.vector_set(direction=[1.,0.01,0],
 norm_list=[1.00, 0.95, [], -1.00,
 -0.95, -0.90, [], 1.00],
 units=1e6*SI('A/m'))

loop over the applied fields Hs
sim.hysteresis(Hs, save=[('restart','fields', at('convergence'))])

As in the previous examples, we first need to import the modules
necessary for the simulation. at('convergence') allows us to save
the fields and the averages whenever convergence is reached.
We then define the material of the magnetic object, load the mesh and set
the initial configuration of the magnetisation as well as the
external field.

2.3.2. Hysteresis loop computation

We apply the external magnetic fields in the x-direction with range of
1e6 A/m down to -1e6 A/m in steps of 0.05e6 A/m.

To convey this information efficiently to |nmag|, we use:

	a direction for the applied field (here just [1,0.01,0]), (note
that we have a small y-component of 1% in the applied field to break
the symmetry)

	a list of magnitudes of the field that will be multiplied with the
direction vector,

	another multiplier that defines the physical dimension of the applied fields
(here 1000kA/m, given as 1e6*SI('A/m')).

Putting all this together, we obtain this command:

Hs = nmag.vector_set(direction=[1., 0.01, 0],
 norm_list=[1.00, 0.95, [], -1.00,
 -0.95, -0.90, [], 1.00],
 units=1e6*SI('A/m'))

which computes a list of vectors Hs. Each entry in the list
corresponds to one applied field.

The hysteresis command takes this list of applied fields Hs as
one input parameter, and computes the hysteresis loop for these
fields:

sim.hysteresis(Hs, save=[('restart', 'fields', at('convergence'))])

The save parameter is used to tell the hysteresis command what
data to save, and how often. We have come across this notation when
explaining the relax command in the section “Relaxing” the system of the previous example. In the example shown here, we
request that the fields and the restart data should be saved at
the point in time where we reach convergence. (The spatially
averaged data is saved automatically to the Data files (.ndt) file when the
fields are saved.) This is done in a compact notation shown above
which is equivalent to this more explicit version:

sim.hysteresis(Hs,
 save=[('restart', at('convergence')),
 ('fields', at('convergence'))])

The compact notation can be used because here we want to save
fields and restart data at the same time.

The hysteresis command computes the time development of the system
for one applied field until a convergence criterion is met. It then
proceeds to the next external field value provided in Hs.

We run the simulation as usual using:

$ nsim ellipsoid.py

If you have run the simulation before, we need to use the --clean
switch to enforce overriding of existing data files:

$ nsim ellipsoid.py --clean

The simulation should take only a few minutes (for example 3 minutes
on an Athlon64 3800+), and needs about 75MB of RAM.

If the simulation has been interrupted, it can be continued using

$ nsim ellipsoid.py –restart

2.3.3. Obtaining the hysteresis loop data

Once the calculation has finished, we can plot the graph of the
magnetisation (projected along the direction of the applied field) as a
function of the applied field.

We use the ncol command to extract the data into a text file named plot.dat:

$ ncol ellipsoid H_ext_0 m_Py_0 > plot.dat

2.3.4. Plotting the hysteresis loop with Gnuplot

In this example, rather than using `xmgrace`_, we show how to plot data
using `Gnuplot`_:

$ gnuplot make_plot.gnu

The contents of the gnuplot script make_plot.gnu are:

set term postscript eps enhanced color
set out 'hysteresis.eps'
set xlabel 'Applied field H_x (A/m)'
set ylabel 'M_x / M_s'
set xrange [-1050000:1050000]
set yrange [-1.2:1.2]
plot 'plot.dat' u 1:2 ti 'ellipsoid example' w lp 3

which generates the following hysteresis loop graph:

[image: ../_images/hysteresis.png]

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.4. Example: Hysteresis loop for Stoner-Wohlfarth particle

This example is very similar to Example: Simple hysteresis loop but
computes the hysteresis loop of a smaller ellipsoidal magnetic
object. This allows to compare the results with the analytical
solution given by the Stoner-Wohlfarth model. We use an ellipsoid
whose x,y,z semi-axes have lengths 9 nm, 3 nm and 3 nm,
respectively. (The mesh is contained in ellipsoid.nmesh.h5 and produced with
`Netgen`_ from ellipsoid.geo):

[image: ../_images/ellipsoid_mesh.png]
To compute the hysteresis loop for the ellipsoid, we use the
script ellipsoid.py:

import nmag
from nmag import SI, at

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

load mesh: the mesh dimensions are scaled by 0.5 nm
sim.load_mesh("ellipsoid.nmesh.h5",
 [("ellipsoid", Py)],
 unit_length=SI(1e-9,"m"))

set initial magnetisation
sim.set_m([1.,1.,0.])

Hs = nmag.vector_set(direction=[1.,1.,0.],
 norm_list=[1.0, 0.995, [], -1.0,
 -0.995, -0.990, [], 1.0],
 units=1e6*SI('A/m'))

loop over the applied fields Hs
sim.hysteresis(Hs, save=[('averages', at('convergence'))])

We apply external magnetic fields in [110] direction (i.e. 45 degrees
between the x and the y-axis) to this system, with strengths in the
range of 1000 kA/m down to -1000 kA/m in steps of 5 kA/m.

The save parameter is used to tell the hysteresis command what
data to save, and how often. Here, we are only interested in saving
the spatially averaged magnetisation values for every stage (i.e.
meta-stable equilibrium before the applied field is changed).

2.4.1. Plotting the hysteresis loop

To extract the data needed for plotting the hysteresis loop
we proceed as explained in the previous
example Example: Simple hysteresis loop.
We use the ncol command and extract the data into a text file
named plot.dat:

$ ncol ellipsoid H_ext_0 H_ext_1 H_ext_2 m_Py_0 m_Py_1 m_Py_2 > plot.dat

We then use `Gnuplot`_ to plot the loop:

$ gnuplot make_plot.gnu

The gnuplot script make_plot.gnu is:

set term postscript eps enhanced color
set out 'hysteresis.eps'
set xlabel 'Applied field (kA/m)'
set ylabel 'M / Ms'
versor_x = 1/sqrt(2)
versor_y = 1/sqrt(2)
versor_z = 0.0
scalar_prod(x1,x2,x3) = x1*versor_x + x2*versor_y + x3*versor_z

set mxtics 5 # minor tics and grid
set ytics 1
set mytics 5
set grid xtics ytics mxtics mytics lt -1 lw 0.5, lt 0
plot [-1050:1050] [-1.2:1.2] \
 'plot.dat' u (scalar_prod($1,$2,$3)/1000):(scalar_prod($4,$5,$6)) t 'Stoner-Wohlfarth' w lp 4

Note that within the gnuplot file, we project the magnetisation data
in the [1,1,0] direction because the applied field was acting
in this direction. We obtain this hysteresis loop:

[image: ../_images/hysteresis1.png]
The coercive field, which is located somewhere between 165 and 170
kA/m, can now be compared with the analytically known result for this
particular system. To compute it, we need the demagnetizing factors
Nx, Ny, Nz of the particle along the main axes. Since we deal with a
prolate ellipsoid where two of the axes have the same dimension (y and
z in this case), it is sufficient to compute the factor along the
longest axis (x axis). The other two are easily derived from the
relation Nx + Ny + Nz = 1. The expression to compute Nx is

\[N_x = \frac{1}{m^2-1} \cdot \left[\frac{m}{2\sqrt{m^2-1}} \cdot \ln\left(\frac{m+\sqrt{m^2-1}}{m-\sqrt{m^2-1}} \right) - 1 \right]\]

where we call the length of the x semi-axis a, the length of the y
(or z) semi-axis c, and take m to be the ratio
m = a/c. Here, the value of Nx is therefore 0.1087, so we have
Ny = Nz = 0.4456. With these values the shape anisotropy is easily
computed according to the expression:

\[H_a = M_s \cdot \Delta N = M_s \cdot \left(N_z-N_x\right)\]

This gives Ha = 337 kA/m in the case of Ms = 1000 kA/m. The final
step is to compute the coercive field hc using this analytical
(Stoner-Wohlfarth) result:

\[h_c = \frac{H_c}{H_a} = \sin \theta_0 \cdot \cos \theta_0\]

Here, theta_0 is the angle between the easy-axis of the particle
(x-axis in our case) and the direction of the applied
field. Substituting theta_0 = 45 (degrees) in the formula, we obtain
hc = 0.5, that is Hc = 0.5 * Ha = 168 kA/m. As we have seen before,
the simulated hysteresis loop gives a value between 165 and 170 kA/m,
which is in agreement with the analytical solution.

Note that this simulation is relatively slow due to a number of
constraints: to get good Stoner-Wolfarth behaviour, we need to
describe the shape of the ellipsoid well, and thus need a small
edgelength when we generate the mesh. We further need uniform
behaviour of the magnetisation, which limits the overall size of the
ellipsoid. A general property of micromagnetic simulations is that the
associated differential equations get stiffer if the edge lengths (or
more generally: distances between neighbouring degrees of freedom)
become smaller. Stiffer systems of differential equations are harder
to intergrate, and thus take more time.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.5. Example: Hysteresis loop for thin disk

This example computes the hysteresis loop of a flat disc magnetised
along a direction orthogonal to the main axis. In comparison to the
previous Example: Hysteresis loop for Stoner-Wohlfarth particle, it demonstrates the use of a
more complex sequence of applied fields.

We use a disc 20 nm thick and 200 nm in diameter for this example (the
mesh is contained in nanodot1.nmesh.h5
which is created from the_nanodot.geo with `Netgen`_):

[image: ../_images/nanodot1_mesh.png]
To compute the hysteresis loop for the disc, we use the script
nanodot1.py:

import nmag
from nmag import SI, at

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(795774,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m")
)

load mesh: the mesh dimensions are scaled by 100nm
sim.load_mesh("nanodot1.nmesh.h5",
 [("cylinder", Py)],
 unit_length=SI(100e-9,"m")
)

set initial magnetisation
sim.set_m([1.,0.,0.])

Hs = nmag.vector_set(direction=[1.,0.,0.],
 norm_list=[1000.0, 900.0, [],
 95.0, 90.0, [],
 -100.0, -200.0, [],
 -1000.0, -900.0, [],
 -95.0, -90.0, [],
 100.0, 200.0, [], 1000.0],
 units=1e3*SI('A/m')
)

loop over the applied fields Hs
sim.hysteresis(Hs,
 save=[('averages', 'fields', 'restart', at('convergence'))]
)

We assume that the previous example have been sufficiently instructive
to explain the basic steps such as importing nmag, creating a
simulation object, defining the material and leading the mesh. Here,
we focus on the hysteresis command:

We would like to apply fields ranging from [1e6, 0, 0] A/m to
[100e3, 0, 0] A/m in steps of 100e3 A/m. Then, from [95e3,
0, 0] A/m to [-95e3, 0, 0] A/m we would like to use a smaller
step size of 5e3 A/m (to resolve this applied field range better).

This will take us through zero applied field ([0,0,0] A/m). Now,
symmetrically to the positive field values, we would like to use a
step size of 100e3 A/m again to go from [-100e3, 0, 0] A/m to
[-1e6, 0, 0] A/m. At this point, we would like to reverse the whole
sequence (to sweep the field back to the initial value).

The information we need for the hysteresis command includes:

	a direction for the applied field (here just [1,0,0]),

	a list of magnitudes of the field (this is the norm_list) that
will be interpreted, and then multiplied with the direction vector,

As in the Example: Simple hysteresis loop and in the
Example: Hysteresis loop for Stoner-Wohlfarth particle, we employ a special notation for
ranges of field strengths understood by nmag.vector_set. The
expression:

[1000.0, 900.0, [], 95.0]

means that we start with a magnitude of 1000, the next magnitude is
900. The empty brackets ([]) indicate that this sequence should
be continued (i.e. 800, 700, 600, 500, 400, 300, 200, 100) up to but
not beyond the next value given (i.e. 95).

	another multiplier that defines the strength of the applied fields
(here, 1e3*SI('A/m')).

The corresponding command is:

Hs = nmag.vector_set(direction=[1,0,0],
 norm_list=[1000.0, 900.0, [],
 95.0, 90.0, [],
 -100.0, -200.0, [],
 -1000.0, -900.0, [],
 -95.0, -90.0, [],
 100.0, 200.0, [], 1000.0],
 units=1e6*SI('A/m')
)

which computes a list of vectors Hs. The hysteresis command takes
this list of applied fields Hs as one input parameter, and will
compute the hysteresis loop for these fields:

sim.hysteresis(Hs,
 save=[('averages', 'fields', 'restart', at('convergence'))]
)

Again, the second parameter (save) is used to tell the hysteresis
command what data to save, and how often. We request that the
averages of the fields, the fields and the restart data
should be saved at those points in time where we reach convergence.
(See also Restart example).

2.5.1. Thin disk hysteresis loop

Once the calculation has finished, we can plot the hysteresis loop,
i.e. the graph of the magnetisation computed along the direction of
the applied field as a function of the applied field strength.

We use the ncol command to extract the data into a text file plot.dat:

$ ncol nanodot1 H_ext_0 m_Py_0 > plot.dat

This file starts as follows:

 1000000 0.9995058139817
 1000000 0.9995058139817
 900000 0.9994226410102
 900000 0.9994226410102
 800000 0.9993139080655

We use `Gnuplot`_ to plot the hysteresis loop:

$ gnuplot make_plot.gnu

using the gnuplot script make_plot.gnu:

set term postscript eps enhanced color
set out 'nanodot_hyst.eps'
set xlabel 'Applied field (A/m)'
set ylabel 'M / Ms'
set xrange [-1.2e6:1.2e6]
set yrange [-1.2:1.2]
plot 'plot.dat' u 1:2 ti 'nmag' with linespoints lw 3 pt 5

The resulting graph is:

[image: ../_images/nanodot_hyst.png]
and the comparison with the `Magpar`_ data, obtained with the
script make_comparison_plot.gnu:

set term postscript eps enhanced color
set out 'nanodot_comparison_hyst.eps'
set xlabel 'Applied field (kA/m)'
set ylabel 'M / Ms'
set xrange [-0.2e3:0.2e3]
set yrange [-1.2:1.2]
plot 'plot.dat' u ($1/1000):2 ti 'nmag' w lp 3, 'magpar.dat' u 1:2 ti 'magpar' w p 4

is shown here (note that the `Magpar`_ computation only shows half of
the hysteresis loop.):

[image: ../_images/nanodot_comparison_hyst.png]
Here we can see a slight difference between |nmag| and `Magpar`_ in the
location of the switching point, probably due to different tolerances
in both programs when determining time integrator convergence.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.6. Example: Vortex formation and propagation in disk

This example computes the evolution of a vortex in a flat cylinder
magnetised along a direction orthogonal to the main axis.

We use the same geometry as in the Hysteresis loop for thin
disk example: a flat cylinder, 20 nm thick and 200 nm in diameter (the mesh
is contained in nanodot.nmesh.h5):

[image: ../_images/nanodot_mesh.png]
To simulate the magnetised disc, we use the following
script (nanodot.py):

import nmag
from nmag import SI, at

#create simulation object
sim = nmag.Simulation()

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(795774,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m")
)

load mesh: the mesh dimensions are scaled by 100nm
sim.load_mesh("../example_vortex/nanodot.nmesh.h5",
 [("cylinder", Py)],
 unit_length=SI(100e-9,"m")
)

set initial magnetisation
sim.set_m([1.,0.,0.])

Hs = nmag.vector_set(direction=[1.,0.,0.],
 norm_list=[12.0, 7.0, [], -200.0],
 units=1e3*SI('A/m')
)

loop over the applied fields Hs
sim.hysteresis(Hs,
 save=[('averages', at('convergence')),
 ('fields', at('convergence')),
 ('restart', at('convergence'))
]
)

We would like to compute the magnetisation behaviour in the applied
fields ranging from [12e3, 0, 0] A/m to [-200e3, 0, 0] A/m in
steps of -5e3 A/m. The command for this is:

Hs = nmag.vector_set(direction=[1,0,0],
 norm_list=[12.0, 7.0, [], -200.0],
 units=1e3*SI('A/m')
)

sim.hysteresis(Hs,
 save=[('averages', at('convergence')),
 ('fields', at('convergence')),
 ('restart', at('convergence'))
]
)

The ncol command allows us to extract the data and we redirect it to
a text file with name nmag.dat:

$ ncol nanodot H_ext_0 m_Py_0 > nmag.dat

Plotting the data with `Gnuplot`_:

$ gnuplot make_comparison_plot.gnu

which uses the script in make_comparison_plot.gnu:

set term postscript eps enhanced color
set out 'nanodot_evo.eps'
set xlabel 'Applied field (kA/m)'
set ylabel 'M / M_s'
plot [-250:50] [-1.2:1.2] 'magpar.dat' u 2:3 ti 'magpar' w lp 4 , 'nmag.dat' u ($1/1000):2 ti 'nmag' w lp 3

The resulting graph is shown here:

[image: ../_images/nanodot_evo.png]
and we can see that the results from nsim match those from `magpar`_.
The magnetisation configurations during the switching process are
shown in the following snapshots:

[image: nanodot-1]
Magnetisation configuration for a decreasing applied field of 20 kA/m. The x-axis is increasing from left to right for this and the subsequent plots.

[image: nanodot-2]
Magnetisation configuration for a decreasing applied field of 15 kA/m.

[image: nanodot-3]
Magnetisation configuration for a decreasing applied field of 10 kA/m.

[image: nanodot-4]
Magnetisation configuration for a decreasing applied field of -30 kA/m.

[image: nanodot-5]
Magnetisation configuration for a decreasing applied field of -95 kA/m.

[image: nanodot-6]
Magnetisation configuration for a decreasing applied field of -100 kA/m.

We see that during magnetisation reversal a vortex nucleates on the
boundary of the disc when the field is sufficiently decreased from its
saturation value. As the field direction is aligned with the x-axis,
the vortex appears in the disc region with the largest y component,
and it moves downwards towards the centre along the y-axis. With a
further decrease of the applied field the vortex moves towards the
opposite side of the disc with respect to the nucleation position, and
it is eventually expelled when the magnetisation aligns with the field
direction over all the disc.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.7. Example: Manipulating magnetisation

There are two basic techniques to modify the magnetisation: on the one
hand, we can use the set_m method to replace the current
magnetisation configuration with a new one. We can use set_m to specify
both homogeneous (see Setting the initial magnetisation)
and non-homogeneous magnetisations (see the Spin-waves example).
Alternatively, we can selectively change magnetic moments at individual mesh sites.
This example demonstrates how to use the latter technique.

The basics of this system are as in Example: Demag field in uniformly
magnetised sphere: we study a ferromagnetic sphere with initially
homogeneous magnetisation. The corresponding script file is
sphere_manipulate.py

import nmag
from nmag import SI

Create simulation object
sim = nmag.Simulation()

Define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

Load mesh
sim.load_mesh("sphere1.nmesh.h5", [("sphere", Py)], unit_length=SI(1e-9, "m"))

Set initial magnetisation
sim.set_m([1, 0, 0])

Set external field
sim.set_H_ext([0, 0, 0], SI("A/m"))

Save and display data in a variety of ways
Step 1: save all fields spatially resolved

sim.save_data(fields='all')

Step 2: sample demag field through sphere
for i in range(-10, 11):
 x = i*1e-9 # position in metres
 H_demag = sim.probe_subfield_siv('H_demag', [x, 0, 0])
 print "x =", x, ": H_demag = ", H_demag

Step 3: sample exchange field through sphere
for i in range(-10, 11):
 x = i*1e-9 # position in metres
 H_exch_Py = sim.probe_subfield_siv('H_exch_Py', [x, 0, 0])
 print "x =", x, ": H_exch_Py = ", H_exch_Py

Now modify the magnetisation at position (0,0,0) (this happens to be
node 0 in the mesh) in steps 4 to 6:

Step 4: request a vector with the magnetisation of all sites in the mesh
myM = sim.get_subfield('m_Py')

Step 5: We modify the first entry:
myM[0] = [0, 1, 0]

Step 6: Set the magnetisation to the new (modified) values
sim.set_m(myM)

Step 7: saving the fields again (so that we can later plot the demag
and exchange field)
sim.save_data(fields='all')

Step 8: sample demag field through sphere (as step 2)
for i in range(-10, 11):
 x = i*1e-9 # position in metres
 H_demag = sim.probe_subfield_siv('H_demag', [x, 0, 0])
 print "x =", x, ": H_demag = ", H_demag

Step 9: sample exchange field through sphere (as step 3)
for i in range(-10, 11):
 x = i*1e-9 # position in metres
 H_exch_Py = sim.probe_subfield_siv('H_exch_Py', [x, 0, 0])
 print "x =", x, ": H_exch_Py = ", H_exch_Py

To execute this script, we have to give its name to the nsim
executable, for example (on linux):

$ nsim sphere_manipulate.py

After having created the simulation object, defined the material,
loaded the mesh, set the initial magnetisation and the external field,
we save the data the first time (Step 1).

We could visualise the magnetisation and all other fields as described
in Example: Demag field in uniformly magnetised sphere, and would
obtain the same figures as shown in section
Saving spatially resolved data.

In step 2, we probe the demag field at positions along a line going
from [-10,0,0]nm to [10,0,0]nm, and then print the values. This
produces the following output:

x = -1e-08 : H_demag = None
x = -9e-09 : H_demag = [-329656.18892701436, 131.69946810517845, 197.13873034397167]
x = -8e-09 : H_demag = [-329783.31649797881, 68.617197264295427, 140.00328871543459]
x = -7e-09 : H_demag = [-329842.17628131888, 183.37401011699876, 163.01612229436262]
x = -6e-09 : H_demag = [-329904.84956877632, 133.62473797637142, 74.090532749764847]
x = -5e-09 : H_demag = [-329974.43178624194, 85.517390832982983, -13.956465964930704]
x = -4e-09 : H_demag = [-330002.69224229571, 64.187663119270084, -30.832135394870004]
x = -3e-09 : H_demag = [-330006.79488959321, 25.479055440690821, -61.958073893954818]
x = -2e-09 : H_demag = [-330020.18327401817, 11.70722487517595, -58.143562276077219]
x = -1e-09 : H_demag = [-330025.52325345919, -5.7120648683347452, -52.237341988696294]
x = 0.0 : H_demag = [-330028.67095553532, -25.707310077918752, -46.346108473560378]
x = 1e-09 : H_demag = [-330058.98559210222, -37.699378078580203, -41.167364094137213]
x = 2e-09 : H_demag = [-330089.30022866925, -49.691446079241658, -35.988619714714041]
x = 3e-09 : H_demag = [-330145.36618529289, -63.819285767062581, -22.213920341440794]
x = 4e-09 : H_demag = [-330220.13307247689, -76.54950394725968, -5.0509172407556262]
x = 5e-09 : H_demag = [-330298.69089200837, -90.534514175273259, 13.57279800234617]
x = 6e-09 : H_demag = [-330375.34327985492, -117.01128011426778, 35.262477275758371]
x = 7e-09 : H_demag = [-330415.38940687838, -123.68558207391983, 60.580352625726341]
x = 8e-09 : H_demag = [-330474.37719032855, -112.22952205433305, 106.13032196062491]
x = 9e-09 : H_demag = [-330499.64039893239, -69.97070465326442, 160.41688110297264]
x = 1e-08 : H_demag = [-330518.649930441, -26.536490670368085, 212.32392103651733]

The data is approximately 1/3 Ms = 333333 (A/m) in the direction of the
magnetisation, and approximately zero in the other directions, as we
would expect in a homogeneously magnetised sphere. The deviations we
see are due to (i) the shape of the sphere not being perfectly
resolved (ie we actually look at the demag field of a polyhedron)
and (ii) numerical errors.

In step 3, we probe the exchange field along the same line. The
exchange field is effectively zero because the magnetisation is
pointing everywhere in the same direction:

x = -1e-08 : H_exch_Py = None
x = -9e-09 : H_exch_Py = [-1.264324643856989e-09, 0.0, 0.0]
x = -8e-09 : H_exch_Py = [-2.0419540595507732e-10, 0.0, 0.0]
x = -7e-09 : H_exch_Py = [-1.4334754136843496e-09, 0.0, 0.0]
x = -6e-09 : H_exch_Py = [-2.7214181426130964e-10, 0.0, 0.0]
x = -5e-09 : H_exch_Py = [1.6323042074911775e-09, 0.0, 0.0]
x = -4e-09 : H_exch_Py = [-1.6243345875473033e-09, 0.0, 0.0]
x = -3e-09 : H_exch_Py = [-5.6526341264934703e-09, 0.0, 0.0]
x = -2e-09 : H_exch_Py = [-6.1145979552370084e-09, 0.0, 0.0]
x = -1e-09 : H_exch_Py = [-3.0929969691649876e-09, 0.0, 0.0]
x = 0.0 : H_exch_Py = [9.2633407053741312e-10, 0.0, 0.0]
x = 1e-09 : H_exch_Py = [1.9476821552904271e-09, 0.0, 0.0]
x = 2e-09 : H_exch_Py = [2.9690302400434413e-09, 0.0, 0.0]
x = 3e-09 : H_exch_Py = [2.6077357277001043e-09, 0.0, 0.0]
x = 4e-09 : H_exch_Py = [1.5836815585162886e-09, 0.0, 0.0]
x = 5e-09 : H_exch_Py = [1.6602158583197139e-09, 0.0, 0.0]
x = 6e-09 : H_exch_Py = [1.8844573960991853e-09, 0.0, 0.0]
x = 7e-09 : H_exch_Py = [-6.2460015649740799e-09, 0.0, 0.0]
x = 8e-09 : H_exch_Py = [-1.1231714572170603e-08, 0.0, 0.0]
x = 9e-09 : H_exch_Py = [-7.3643182171284044e-09, 0.0, 0.0]
x = 1e-08 : H_exch_Py = [-3.4351784609779937e-09, 0.0, 0.0]

Note that the subfield name we are probing for the exchange field is
H_exch_Py whereas the subfield name we used to probe the demag
field is H_demag (without the extension _Py. The reason for
this is that the exchange field is a something that is associated with
a particular material (here Py) whereas there is only one demag field
that is experienced by all materials (see also Fields and subfields).

2.7.1. Modifying the magnetisation

In step 4, we use the get_subfield command. This will return a
(NumPy) array that contains one 3d vector for every Site of the
finite element mesh.

In step 5, we modify the first entry in this array (which has index
0), and set its value to [0,1,0]. Whereas the magnetisation is
pointing everywhere in [1,0,0] (because we have used the set_m
command in the very beginning of the program, it is now pointing in
the [0,1,0] at site 0.

The information, which site corresponds to which entry in the data
vector, that we have obtained using get_subfield, can be retrieved from
get_subfield_sites. Correspondingly, the position of the sites can be
obtained using get_subfield_positions.

We now need to set this modified magnetisation vector (Step 6) using
the set_m command.

If we save the data again to the file (Step 7), we can subsequently
convert this to a vtk file (using, for example, nmagpp --vtk data
sphere_manipulate) and visualise with MayaVi:

[image: ../_images/step7.png]
We can see one blue cone in the centre of the sphere - this is the
one site that he have modified to point in the y-direction (whereas all
other cones point in the x-direction).

As before, we can probe the fields along a line through the center of
the sphere (Step 8). For the demag field we obtain:

x = -1e-08 : H_demag = None
x = -9e-09 : H_demag = [-333816.99138074159, -1884.643376396662, 16.665519199152595]
x = -8e-09 : H_demag = [-334670.87148225965, -2293.608410913705, -102.38526828192296]
x = -7e-09 : H_demag = [-335258.77403632947, -3061.1708540342884, -532.73877752122235]
x = -6e-09 : H_demag = [-339506.72150998382, -5316.1506383768137, -969.36630578549921]
x = -5e-09 : H_demag = [-344177.83909963415, -8732.9787600552572, -1610.433091871927]
x = -4e-09 : H_demag = [-344725.75257842313, -16708.164927667149, -5224.2484897904633]
x = -3e-09 : H_demag = [-337963.49070659198, -24567.078937669514, -3321.016613832679]
x = -2e-09 : H_demag = [-321612.85117992124, -30613.873989917105, -1385.6383061516099]
x = -1e-09 : H_demag = [-298312.3363571504, -41265.117003123923, 636.60703829516081]
x = 0.0 : H_demag = [-273449.78240732534, -52534.176864875568, 2793.5027588779139]
x = 1e-09 : H_demag = [-293644.21931918303, -39844.049389551074, 4310.6449471266505]
x = 2e-09 : H_demag = [-313838.65623104072, -27153.921914226579, 5827.7871353753881]
x = 3e-09 : H_demag = [-330296.09687372146, -21814.293451835449, 5525.7290665358933]
x = 4e-09 : H_demag = [-343611.94111195666, -18185.932406317523, 4931.5464761658959]
x = 5e-09 : H_demag = [-348062.40814087034, -11029.603829202088, 3781.8263522408147]
x = 6e-09 : H_demag = [-342272.36888512014, -6604.210117819096, 50.151907623841332]
x = 7e-09 : H_demag = [-338716.66400897497, -3860.7761876767272, 485.90273674867018]
x = 8e-09 : H_demag = [-335656.89887674141, -2610.0345208853882, 586.74812908870092]
x = 9e-09 : H_demag = [-334985.59512328985, -2169.9546280837162, 542.76746044672041]
x = 1e-08 : H_demag = [-334441.59096545313, -1634.8337299563193, 627.17874011463311]

The change of the magnetisation at position [0,0,0] from [1,0,0] to
[0,1,0] has reduced the x-component of the demag field somewhat around
x=0, and has introduced a significant demag field in the -y direction
around x=0.

Looking at the exchange field (Step 9):

x = -1e-08 : H_exch_Py = None
x = -9e-09 : H_exch_Py = [-1.264324643856989e-09, 0.0, 0.0]
x = -8e-09 : H_exch_Py = [-2.0419540595507732e-10, 0.0, 0.0]
x = -7e-09 : H_exch_Py = [-1.4334754136843496e-09, 0.0, 0.0]
x = -6e-09 : H_exch_Py = [-2.7214181426130964e-10, 0.0, 0.0]
x = -5e-09 : H_exch_Py = [1.6323042074911775e-09, 0.0, 0.0]
x = -4e-09 : H_exch_Py = [-153858.81305452777, 153858.81305452611, 0.0]
x = -3e-09 : H_exch_Py = [-972420.67935341748, 972420.67935341166, 0.0]
x = -2e-09 : H_exch_Py = [-2445371.8369108676, 2445371.8369108611, 0.0]
x = -1e-09 : H_exch_Py = [5283169.701234119, -5283169.7012341227, 0.0]
x = 0.0 : H_exch_Py = [15888993.991894867, -15888993.991894867, 0.0]
x = 1e-09 : H_exch_Py = [8434471.7912872285, -8434471.7912872266, 0.0]
x = 2e-09 : H_exch_Py = [979949.59067958547, -979949.59067958279, 0.0]
x = 3e-09 : H_exch_Py = [-1112837.3087986181, 1112837.3087986207, 0.0]
x = 4e-09 : H_exch_Py = [-193877.66176242317, 193877.6617624248, 0.0]
x = 5e-09 : H_exch_Py = [1.6602158583197139e-09, 0.0, 0.0]
x = 6e-09 : H_exch_Py = [1.8844573960991853e-09, 0.0, 0.0]
x = 7e-09 : H_exch_Py = [-6.2460015649740799e-09, 0.0, 0.0]
x = 8e-09 : H_exch_Py = [-1.1231714572170603e-08, 0.0, 0.0]
x = 9e-09 : H_exch_Py = [-7.3643182171284044e-09, 0.0, 0.0]
x = 1e-08 : H_exch_Py = [-3.4351784609779937e-09, 0.0, 0.0]

We can see that the exchange field is indeed very large around x=0.

Note that one of the fundamental problem of micromagnetic simulations
is that the magnetisation must not vary significantly from one site to
another. In this example, we have manually violated this requirement
only to demonstrate how the magnetisation can be modified, and to see that
this is reflected in the dependant fields (such as demag and exchange)
immediately.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.8. Example: IPython

The basics of this file are as in Example: Demag field in uniformly
magnetised sphere: a ferromagnetic sphere is studied, and initially
configured to have homogeneous magnetisation.

Here is the source code of sphere_ipython.py

import nmag
from nmag import SI

Create simulation object
sim = nmag.Simulation()

Define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

Load mesh
sim.load_mesh("sphere1.nmesh.h5", [("sphere", Py)], unit_length=SI(1e-9,"m"))

Set initial magnetisation
sim.set_m([1, 0, 0])

Activate interactive python session
nmag.ipython()

print "Back in main code"

To execute this script, we have to give its name to the nsim
executable, for example (on linux):

$ nsim sphere_ipython.py

The new command appearing here is:

nmag.ipython()

This calls an interactive python interpreter (this is like the
standard ipython interpreter called from the command prompt).

Once we are “inside” this ipython interpreter, we can interactively work with
the simulation object. We demonstrate this with the transcript of such
a session:

$ nsim sphere_ipython.py

<snip>

In [1]: sim.get_subfield("H_demag")
Out[1]:
array([[-3.30028671e+05, -2.57073101e+01, -4.63461085e+01],
 [-3.30518650e+05, -2.65364907e+01, 2.12323921e+02],
 [-3.30380750e+05, -1.34382835e+02, 1.94635283e+01],
 ...,
 [-3.30063839e+05, 4.56312711e+01, -1.31204248e+02],
 [-3.30056243e+05, -3.23341645e+01, -2.26732582e+02],
 [-3.29950815e+05, 4.44150291e+01, -5.41700794e+01]])

In [2]: sim.set_m([0,0,1])

In [3]: sim.get_subfield("H_demag")
Out[3]:
array([[-6.86773473e+01, 4.44496808e+01, -3.30084368e+05],
 [-2.83792944e+02, 1.78935681e+02, -3.30268314e+05],
 [-2.04396266e+02, 2.48374212e+02, -3.30180923e+05],
 ...,
 [-1.02055030e+02, -9.53215211e+01, -3.30239401e+05],
 [1.94875407e+02, 1.22757584e+02, -3.29771010e+05],
 [6.16259262e+01, 1.66071597e+02, -3.29848851e+05]])

Note that within ipython, one can just press the TAB key to
autocomplete object names, functions and commands.

You can leave the ipython environment by pressing CTRL+D. For the
script shown here, this will print Back in main code before the
end of the script is reached. The ipython() command is
occasionally a handy debugging feature: in order to investigate the
behaviour of the system “on the spot”, one can insert an ipython call
into the script which will open an interactive command line.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.9. Example: Pinning Magnetisation

In this example we show how to pin (i.e. fix) magnetisation
in certain parts of a material.

2.9.1. Pinning simulation script

import nmag
from nmag import SI, si

Create simulation object
sim = nmag.Simulation()

Define magnetic material: PermAlloy
Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

Load mesh
sim.load_mesh("sphere1.nmesh.h5", [("sphere", Py)], unit_length=SI(1e-9, "m"))

Set initial magnetisation to +x direction
sim.set_m([1, 0, 0])

Pin magnetisation at center in radius of 4e-9m
def pin_at_center((x, y, z)):
 if (x*x + y*y + z*z) < (4e-9)*(4e-9):
 return 0.0 # Inside the 4nm sphere -> pin
 else:
 return 1.0 # Outside -> do not pin

sim.set_pinning(pin_at_center)

Apply external field in +y direction
unit = 0.5*si.Tesla/si.mu0 # 500mT in A/m
sim.set_H_ext([0*unit, 1*unit, 0*unit])

Relax the magnetisation
sim.relax()

2.9.2. Pinning magnetisation

In order to allow the user to fix the magnetisation, |nmag| provides a
scalar field, the so-called pinning field: its value at each site is
used as a scale factor for dm/dt, hence by setting it to 0 at
certain locations of the mesh we can force magnetisation to remain
constant at these locations for the entire simulation.

We set the pinning field using set_pinning (which is used like
set_m and set_H_ext, except that it is a scalar field whereas the
latter are vector fields) such that magnetisation is fixed at sites
with distance less than 4 nm from the sphere’s center. First we define
a Python function which we decide to call pin_at_center:

def pin_at_center((x, y, z)):
 if (x*x + y*y + z*z) < (4e-9)*(4e-9):
 return 0.0
 else:
 return 1.0

The function is called for each site of the mesh
and receives the site position as an argument,
a 3-tuple (x, y, z) containing the three
components x, y and z (three floating point numbers),
given in metres.
The function returns either 0.0 (which means the magnetisation
at this position is pinned) or 1.0 (in which case there is no pinning),
for the given position vector.

The formula in the if statement simply evaluates the magnitude
of the vector (x, y, z) by squaring each component.
This number is then compared against (4nm)^2.
As a result, the magnetisation is pinned at all the mesh nodes that are
located within a sphere with center (0, 0, 0) and radius 4 nm.
All the nodes that are located outside this sphere can change
their magnetisation as usual.

Second, we need to tell |nmag| that it should use this function to
decide where the magnetisation should be pinned:

sim.set_pinning(pin_at_center)

Note the slightly counterintuitive fact that value 1 means “no pinning”.

Finally we apply an external field of 0.5 T in +y direction, and use
relax to compute the equilibrium configuration.

The relax command:

sim.relax()

will save the fields and averages at convergence (this is the default
of the relax command).

2.9.3. Visualisation

After running the example via nsim sphere.py we convert the equilibrium
data to VTK format:

$ nmagpp --vtk=sphere.vtk sphere

We would first like to verify that the pinning field has been set up
properly. Hence we use MayaVi to visualise it by showing an
isosurface of the pinning field (shown in blue), together with the
magnetisation vector field.

[image: ../_images/pinned_core.png]
The blue blob in the center of the sphere is the collection of those
tetrahedra that have corners just inside the 4nm sphere. Because we
have not generated the mesh to have nodes coinciding with the 4nm
sphere, the shape of the blue region is not particularly spherical.

In the above diagram, we also see the magnetisation vectors of the
final configuration. Their colour corresponds to the pinning field at
their location. It can be seen that the blue magnetisation vectors
emerging from the central region of the sphere are all pointing
(strictly) in the x-direction. The magnetisation vectors outside the
blue sphere are coloured red. The applied field drives these vectors
to point into the y-direction. However, the magnetisation in the
centre is pinned and the exchange interaction requires a gradual
spatial change of magnetisation. This explains the spatial variation
of the magnetisation.

The next figure shows the same data as the last figure but in addition a
ScalarCutPlane (in MayaVi terminology) has been introduced which
is coloured according to the x-component of the magnetisation. Red
corresponds to 1.0 and blue corresponds to 0.73 (we have not shown the
legend to provide a larger main plot). This demonstrates the gradual
change from the pinned magnetisation in the centre to the outside.

[image: ../_images/magnetisation.png]

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.10. Example: Uniaxial anisotropy

In this example we would like to simulate the development of a Bloch type
domain wall on a thin cobalt bar of dimension 504 x 1 x 1 nm
(bar.nmesh.h5) due to uniaxial
anisotropy.

2.10.1. Uniaxial anisotropy simulation script

import nmag
from nmag import SI, every, at
from numpy import array
import math

Create simulation object (no demag field!)
sim = nmag.Simulation(do_demag=False)

Define magnetic material (data from OOMMF materials file)
Co = nmag.MagMaterial(name="Co",
 Ms=SI(1400e3, "A/m"),
 exchange_coupling=SI(30e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0, 0, 1], K1=SI(520e3, "J/m^3")))

Load the mesh
sim.load_mesh("bar.nmesh.h5", [("bar", Co)], unit_length=SI(1e-9,"m"))

Our bar is subdivided into 3 regions:
- region A: for x < offset;
- region B: for x between offset and offset+length
- region C: for x > offset+length;
The magnetisation is defined over all the three regions,
but is pinned in region A and C.
offset = 2e-9 # m (meters)
length = 500e-9 # m

Set initial magnetisation
def sample_m0((x, y, z)):
 # relative_position goes linearly from -1 to +1 in region B
 relative_position = -2*(x - offset)/length + 1
 mz = min(1.0, max(-1.0, relative_position))
 return [0, math.sqrt(1 - mz*mz), mz]

sim.set_m(sample_m0)

Pin magnetisation outside region B
def sample_pinning((x, y, z)):
 return x >= offset and x <= offset + length

sim.set_pinning(sample_pinning)

Save the magnetisation along the x-axis
def save_magnetisation_along_x(sim):
 f = open('bar_mag_x.dat', 'w')
 for i in range(0, 504):
 x = array([i+0.5, 0.5, 0.5]) * 1e-9
 M = sim.probe_subfield_siv('M_Co', x)
 print >>f, x[0], M[0], M[1], M[2]

Relax the system
sim.relax(save=[(save_magnetisation_along_x, at('convergence'))])

We shall now discuss the bar.py script
step-by-step:

In this particular example we are solely interested in energy terms resulting
from exchange interaction and anisotropy. Hence we disable the demagnetisation
field as follows:

sim = nmag.Simulation(do_demag=False)

We then create the material Co used for the bar, cobalt in this case, which exhibits uniaxial_anisotropy in z direction with phenomenological anisotropy constant
K1 = SI(520e3, "J/m^3"):

Co = nmag.MagMaterial(name="Co",
 Ms=SI(1400e3, "A/m"),
 exchange_coupling=SI(30e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0, 0, 1], K1=SI(520e3, "J/m^3")))

After loading the mesh, we set the initial magnetisation direction such that
it rotates from +z to -z while staying in the plane normal to x direction
(hence suggesting the development of a Bloch type domain wall):

def sample_m0((x, y, z)):
 # relative_position goes linearly from -1 to +1 in region B
 relative_position = -2*(x - offset)/length + 1
 mz = min(1.0, max(-1.0, relative_position))
 return [0, math.sqrt(1 - mz*mz), mz]

We further pin the magnetisation at the very left (x < offset = 2 nm)
and right (x > offset + length = 502 nm) of the bar
(note that the pinning function may also just return a python truth
value rather than the number 0.0 or 1.0):

def sample_pinning((x, y, z)):
 return x >= offset and x <= offset + length

sim.set_pinning(sample_pinning)

Finally, we relax the system to find the equilibrium magnetisation
configuration, which is saved to the file bar_mag_x.dat in a format
understandable by `Gnuplot`_.

2.10.2. Visualization

We can then use the following `Gnuplot`_ script to visualize
the equilibrium magnetisation:

set term png giant size 800, 600
set out 'bar_mag_x.png'
set xlabel 'x (nm)'
set ylabel 'M.z (millions of A/m)'

plot [0:504] [-1.5:1.5] \
 1.4 t "" w l 0, -1.4 t "" w l 0, \
 'bar_mag_x.dat' u ($1/1e-9):($4/1e6) t 'nmag' w l 2

The resulting plot clearly shows that a Bloch type domain wall has developed:

[image: ../_images/bar_mag_x.png]
The figure shows also that the Bloch domain wall is well localized at the center
of the bar, in the region where x goes from 200 to 300 nm.

2.10.3. Comparison

After simulating the same scenario with
OOMMF (see oommf/bar.mif),
we can compare results using another `Gnuplot`_ script:

#set term postscript enhanced eps color
set term png giant size 800, 600
set out 'bar_mag_x_compared.png'

set xlabel 'x (nm)'
set ylabel 'M.z (millions of A/m)'

Mz(x) = 1400e3 * cos(pi/2 + atan(sinh((x - 252e-9)/sqrt(30e-12/520e3))))

plot [220:280] [-1.5:1.5] \
 1.4 t "" w l 0, -1.4 t "" w l 0, \
 'bar_mag_x.dat' u ($1/1e-9):($4/1e6) t 'nmag' w lp 2, \
 'oommf/bar_mag_x.txt'u ($1/1e-9):($4/1e6) t 'oommf' w lp 1, \
 Mz(x*1e-9)/1e6 ti 'analytical' w l 3

which generates the following plot showing good agreement of both systems:

[image: ../_images/bar_mag_x_compared.png]
The plot shows also the known analytical solution:

Mz(x) = Ms * cos(pi/2 + atan(sinh((x - x_wall)/sqrt(A/K1))))

The plot shows only a restricted region located at the center of the bar,
thus allowing an easier comparison between the three sets of data.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.11. Example: Cubic Anisotropy

In this example we will study the behaviour of a 10 x 10 x 10 nm iron
cube with cubic_anisotropy in an external field.

2.11.1. Cubic anisotropy simulation script

import nmag
from nmag import SI, si

Create the simulation object
sim = nmag.Simulation()

Define the magnetic material (data from OOMMF materials file)
Fe = nmag.MagMaterial(name="Fe",
 Ms=SI(1700e3, "A/m"),
 exchange_coupling=SI(21e-12, "J/m"),
 anisotropy=nmag.cubic_anisotropy(axis1=[1, 0, 0],
 axis2=[0, 1, 0],
 K1=SI(48e3, "J/m^3")))

Load the mesh
sim.load_mesh("cube.nmesh", [("cube", Fe)], unit_length=SI(1e-9, "m"))

Set the initial magnetisation
sim.set_m([0, 0, 1])

Launch the hysteresis loop
Hs = nmag.vector_set(direction=[1.0, 0, 0.0001],
 norm_list=[0, 1, [], 19, 19.1, [], 21, 22, [], 50],
 units=0.001*si.Tesla/si.mu0)
sim.hysteresis(Hs)

We will now discuss the cube.py script step-by-step:

After creating the simulation object we define a magnetic material Fe
with cubic anisotropy representing iron:

Fe = nmag.MagMaterial(name="Fe",
 Ms=SI(1700e3, "A/m"),
 exchange_coupling=SI(21e-12, "J/m"),
 anisotropy=nmag.cubic_anisotropy(axis1=[1,0,0],
 axis2=[0,1,0],
 K1=SI(48e3, "J/m^3")))

We load the mesh and set initial magnetisation pointing in +z direction
(that is, in a local minimum of anisotropy energy density).

Finally, we use hysteresis to apply gradually stronger fields in +x direction (up to 50 mT):

Hs = nmag.vector_set(direction=[1.0, 0, 0.0001],
 norm_list=[0, 1, [], 19, 19.1, [], 21, 22, [], 50],
 units=0.001*si.Tesla/si.mu0)

Note that we sample more often the region between 19 and 21 mT where
magnetisation direction changes rapidly due to having crossed the anisotropy
energy “barrier” between +z and +x (as can be seen in the graph below).

2.11.2. Analyzing the result

First, we extract the magnitude of the applied field and the x component of
magnetisation:

ncol cube H_ext_0 M_Fe_0 > cube_hext_vs_m.txt

Then we compare the result with OOMMF’s result (generated from the
equivalent scene description oommf/cube.mif)
using the following `Gnuplot`_ script:

set term png giant size 800,600
set out 'cube_hext_vs_m.png'
set xlabel 'H_ext.x (A/m)'
set ylabel 'M.x (A/m)'
plot 'cube_hext_vs_m.txt' t 'nmag' w l 2,\
 'oommf/cube_hext_vs_m.txt' u ($1*795.77471545947674):2 ti 'oommf' w p 1

which gives the following result:

[image: ../_images/cube_hext_vs_m.png]
|Nmag| provides advanced capabilities to conveniently handle
arbitrary-order anisotropy energy functions. Details can be found in
the documentation of the MagMaterial class.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.12. Example: Arbitrary Anisotropy

In this example we discuss
the script coin.py
which shows how the user can include in his simulations
a customised magnetic anisotropy.

2.12.1. Arbitrary anisotropy simulation script

import nmag
from nmag import SI, every, at
from nsim.si_units import si
import math

Create simulation object (no demag field!)
sim = nmag.Simulation(do_demag=False)

Function to compute the scalar product of the vectors a and b
def scalar_product(a, b): return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]

Here we define a function which returns the energy for a uniaxial
anisotropy of order 4.
K1 = SI(43e3, "J/m^3")
K2 = SI(21e3, "J/m^3")
axis = [0, 0, 1] # The (normalised) axis
def my_anisotropy(m):
 a = scalar_product(axis, m)
 return -K1*a**2 - K2*a**4

my_material = nmag.MagMaterial(name="MyMat",
 Ms=SI(1e6, "A/m"),
 exchange_coupling=SI(10e-12, "J/m"),
 anisotropy=my_anisotropy,
 anisotropy_order=4)

Load the mesh
sim.load_mesh("coin.nmesh.h5", [("coin", my_material)], unit_length=SI(1e-9, "m"))

Set the magnetization
sim.set_m([-1, 0, 0])

Compute the hysteresis loop
Hs = nmag.vector_set(direction=[1.0, 0, 0.0001],
 norm_list=[-0.4, -0.35, [], 0, 0.005, [], 0.15, 0.2, [], 0.4],
 units=si.Tesla/si.mu0)

sim.hysteresis(Hs, save=[('fields', 'averages', at('convergence'))])

We simulate the hysteresis loop for a ferromagnetic thin disc,
where the field is applied orthogonal to the axis of disc.
This script includes one main element of novelty, which concerns the way
the magnetic anisotropy is specified.
In previous examples we found lines such as:

my_material = nmag.MagMaterial(name="MyMat",
 Ms=SI(1e6, "A/m"),
 exchange_coupling=SI(10e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0, 0, 1],
 K1=SI(43e3, "J/m^3"),
 K2=SI(21e3, "J/m^3")))

where the material anisotropy was specified using the provided functions
nmag.uniaxial_anisotropy (uniaxial_anisotropy) and nmag.cubic_anisotropy (cubic_anisotropy).
In this example we are using a different approach to define the anisotropy.
First we define the function my_anisotropy, which returns the energy density
for the magnetic anisotropy:

Here we define a function which returns the energy for a uniaxial
anisotropy of order 4.
K1 = SI(43e3, "J/m^3")
K2 = SI(21e3, "J/m^3")
axis = [0, 0, 1] # The (normalised) axis
def my_anisotropy(m):
 a = scalar_product(axis, m)
 return -K1*a**2 - K2*a**4

Note that the function returns a SI object with units “J/m^3” (energy density).
The reader may have recognised the familiar expression for the uniaxial anisotropy:
in fact the two code snippets we just presented are defining exactly the same
anisotropy, they are just doing it in different ways.
The function scalar_product, which we have used in the second code snippet
just returns the scalar product of two three dimensional vectors a and b
and is defined in the line above:

def scalar_product(a, b): return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]

The function my_anisotropy has to be specified in the material definition:
instead of passing anisotropy=nmag.uniaxial_anisotropy(...)
we just pass anisotropy=my_anisotropy to the material constructor:

my_material = nmag.MagMaterial(name="MyMat",
 Ms=SI(1e6, "A/m"),
 exchange_coupling=SI(10e-12, "J/m"),
 anisotropy=my_anisotropy,
 anisotropy_order=4)

An important point to notice is that here we also provide an anisotropy order.
To understand what this number is, we have to explain briefly what is going on
behind the scenes. |nsim| calculates the values of the user provided function
for an appropriately chosen set of normalised vectors,
it then finds the polynomial in mx, my and mz
(the components of the normalised magnetisation) of the specified order,
which matches the sampled values.

The strength of this approach stands in the fact that the user has to provide
just the energy density for the custom anisotropy.
|nsim| is taking care of working out the other quantities which
are needed for the simulation, such as the magnetic field resulting
from the provided anisotropy energy, which would require a differentiation
of the energy with respect to the normalised magnetisation.

However the user must be sure that the provided function can be expressed
by a polynomial of the specified order in mx, my and mz.
In the present case we are specifying anisotropy_order=4 because the energy
for the uniaxial anisotropy can be expressed as a 4th-order polynomial
in mx, my and mz.

In some cases the user may find useful to know that the functions
nmag.uniaxial_anisotropy and nmag.cubic_anisotropy
can be added: the resulting anisotropy will have as energy
the sum of the energies of the original anisotropies.

2.12.2. The result

The steps involved to extract and plot the data for the simulation discussed
in the previous section should be familiar to the user at this point of the manual.
We then just show the graph obtained from the results
of the script coin.py.

[image: ../_images/coin.png]
During the switching the system falls into an intermediate state,
where the magnetisation is nearly aligned with the anisotropy easy axis.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.13. Restart example

Micromagnetic simulations can last for many hours or even many days.
It is then important to be able to save periodically the state
of the simulation, in such a way that, if a hardware failure
or a power cut occurs, the simulation can be restarted
exactly at the point where its state was last saved.
In this example we show how an nmag script can be modified
to be “restartable”. The only thing the user needs to do
is to periodically save the state of the simulation in what we call
a “restart file”. The simulation can then be restarted
using the appropriate command line option.

The restart feature applies only to the hysteresis method.

2.13.1. Saving the state of the simulation

We re-consider the cubic anisotropy example
(Cubic anisotropy simulation script)
and replace the last line:

sim.hysteresis(Hs)

with the following lines:

from nmag import every, at
sim.hysteresis(Hs, save=[('averages', 'fields', at('stage_end')),
 ('restart', at('stage_end') | every('step', 1000))])

The first two lines reproduce the default behaviour:
the fields and their averages are saved at the end of each stage.
The third line specifies that the restart file should be saved
at the end of each stage and also every 1000 steps.

For convenience the modified script cube_restartable.py is shown below:

import nmag
from nmag import SI, si

Create the simulation object
sim = nmag.Simulation()

Define the magnetic material (data from OOMMF materials file)
Fe = nmag.MagMaterial(name="Fe",
 Ms=SI(1700e3, "A/m"),
 exchange_coupling=SI(21e-12, "J/m"),
 anisotropy=nmag.cubic_anisotropy(axis1=[1, 0, 0],
 axis2=[0, 1, 0],
 K1=SI(48e3, "J/m^3")))

Load the mesh
sim.load_mesh("cube.nmesh", [("cube", Fe)], unit_length=SI(1e-9, "m"))

Set the initial magnetisation
sim.set_m([0, 0, 1])

Launch the hysteresis loop
Hs = nmag.vector_set(direction=[1.0, 0, 0.0001],
 norm_list=[0, 1, [], 19, 19.1, [], 21, 22, [], 50],
 units=0.001*si.Tesla/si.mu0)
from nmag import every, at
sim.hysteresis(Hs, save=[('averages', 'fields', at('stage_end')),
 ('restart', at('stage_end') | every('step', 1000))])

2.13.2. Starting and restarting the simulation

We will now demonstrate how the discussed nmag script can be
restarted. To do that, we will have to interrupt it artificially. We
start the simulation in the usual way:

$ nsim cube_restartable.py

We interrupt the execution after the hysteresis loop has started and
several stages have been computed. Do this by pressing simultaneously
the keys CTRL and C (in the same terminal window where nsim was
started), thus simulating what could have been the result of a power
cut. We then use the command:

$ ncol cube_restartable stage step time

to see at what point of the hysteresis loop the simulation was interrupted.
We obtain (for this particular interruption):

 1 330 3.320127110062e-11
 2 480 5.042492488627e-10
 3 640 9.926580643272e-10
 4 805 1.464971830453e-09
 5 980 1.927649646634e-09
 6 1150 2.406521613682e-09
 7 1340 2.882400372552e-09
 8 1515 3.371522550051e-09
 9 1705 3.863380029345e-09
10 1920 4.365560120394e-09
11 2095 4.893234441813e-09
12 2295 5.436617525896e-09
13 2480 5.997866344586e-09
14 2680 6.570733097131e-09
15 2890 7.172534305054e-09
16 3100 7.803577637245e-09
17 3315 8.462827284047e-09

The simulation was interrupted at the seventeenth stage.
We now try to run the simulation again with the command:

$ nsim cube_restartable.py

obtaining the following output:

<snip>
NmagUserError: Error: Found old file ./cube_restartable_dat.ndt -- cannot proceed.
To start a simulation script with old data files present you either need
to use '--clean' (and then the old files will be deleted), or use '--restart'
in which case the run will be continued.

nsim suggests the possible alternatives. We can start the simulation from scratch with the command (but this will override any data from the previous run):

$ nsim cube_restartable.py --clean

or we can continue from the configuration which was last saved:

$ nsim cube_restartable.py --restart

Here we choose the second possibility.
After the simulation has finished we issue again
the command ncol cube_restartable stage step time, obtaining
the following output:

 1 330 3.320127110062e-11
 2 480 5.042492488627e-10
 3 640 9.926580643272e-10
 4 805 1.464971830453e-09
 5 980 1.927649646634e-09
 6 1150 2.406521613682e-09
 7 1340 2.882400372552e-09
 8 1515 3.371522550051e-09
 9 1705 3.863380029345e-09
 10 1920 4.365560120394e-09
 11 2095 4.893234441813e-09
 12 2295 5.436617525896e-09
 13 2480 5.997866344586e-09
 14 2680 6.570733097131e-09
 15 2890 7.172534305054e-09
 16 3100 7.803577637245e-09
 17 3315 8.462827284047e-09
stage step #time
 <> <> #<s>
 18 3715 8.519843629989e-09
 19 3975 9.300878866142e-09
 ...

The two lines between stage 17 and 18 stand as a reminder that the
simulation was restarted at that point. (They need to be removed
manually from the cube_restartable_dat.ndt file, before ncol can
work in the usual way on the ndt file.)

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.14. Applying a field that changes both in time and in space

2.14.1. Idea: pass simulation object to field-setting function

You can simulate an applied field which both changes in space and
time: this may be useful to mimic the effect of a write head on the
magnetic grains of an hard disk while the head is moving. The way we
do this is by changing the applied field every delta_t
picoseconds. This means that the applied field won’t change
continuously in time: it will be piecewise constant in time (but, in
general, it can be non uniform in space). You can do something like:

import math

def set_H(sim):
 width = 10.0 # nm
 v = 100.0 # nm/ns == m/s
 H_amplitude = 0.5e6 # A/m

 t = float(sim.time/SI(1e-9, 's')) # get the time in ns
 center = (v*t, 0, 0) # center of the applied field region
 def H(r):
 x, y, z = [ri/1e-9 - ci for ri, ci in zip(r, center)]
 factor = H_amplitude*math.exp(-(x*x + y*y + z*z)/(width*width))
 return [factor, factor, factor]

 sim.set_H_ext(H, unit=SI('A/m'))

sim.relax(do=[(set_H, every('time', SI(50e-12, 's'))),
 ('exit', at('time', SI(1000e-12, 's')))])

The function set_H is called every 50 ps and does the following: it
sets a new field from the function H(r). This function sets a field
which directed along the direction [1, 1, 1] and almost vanishes
outside a sphere with radius ~ 30.0 nm. The center of this sphere
moves along the direction [1, 0, 0] with velocity 100 nm/ns, thus
simulating the motion of a write head in a hard disk. Obviously the
piece of code is not complete, it shows only the technique in order to
have a field changing in time and space. For a complete example see
the next section.

2.14.2. Complete example: simple moving write-head example

Here is a simulation of five cubes made of cobalt and a write-head
which moves on the top of the cubes and applies a time-varying field
in order to change their magnetisation. At the beginning the
magnetisation of all the cubes is pointing in the [0, 0, 1]
direction. After the write-head has passed over the cubes, the
magnetisation of cube 1, 3 and 5 are switched in the opposite
direction, while cube 2 and 4 have unchanged magnetisation. This is
possible because the write-head field, which is space-dependent (being
intense only inside a sphere of radius 15-20 nm), changes also in
time. It indeed translates in space, but also change in intensity,
being directed in the [0, 0, -1] direction when the sphere is at the
center of cube 1, 3 and 5 and in the [0, 0, 1] direction when the
center of the sphere is in cube 2 and 4.

Here is the geo file used to generate the mesh (Netgen):

<pre>
algebraic3d

cubes
solid cube1 = orthobrick (0, 0, 0; 20.0, 20.0, 20.0) -maxh = 2;
solid cube2 = orthobrick (30.0, 0, 0; 50.0, 20.0, 20.0) -maxh = 2;
solid cube3 = orthobrick (60.0, 0, 0; 80.0, 20.0, 20.0) -maxh = 2;
solid cube4 = orthobrick (90.0, 0, 0; 110.0, 20.0, 20.0) -maxh = 2;
solid cube5 = orthobrick (120.0, 0, 0; 140.0, 20.0, 20.0) -maxh = 2;

tlo cube1;
tlo cube2;
tlo cube3;
tlo cube4;
tlo cube5;

And here is the full listing of the example:

from nmag.common import *
import math

Define magnetic material (data from OOMMF materials file)
mat_Co = MagMaterial(name="Co",
 Ms=SI(1400e3, "A/m"),
 exchange_coupling=SI(30e-12, "J/m"),
 anisotropy=uniaxial_anisotropy(axis=[0, 0, 1],
 K1=SI(520e3, "J/m^3")))
sim = Simulation()
sim.load_mesh("cubes.nmesh.h5",
 [('cube1', mat_Co), ('cube2', mat_Co), ('cube3', mat_Co),
 ('cube4', mat_Co), ('cube5', mat_Co)],
 unit_length=SI(1e-9, 'm'))

sim.set_m([0, 0, 1])

sim.relax(save=[('fields', at('convergence'))])

t0 = [sim.time]

def set_H(sim):
 t = float((sim.time - t0[0])/SI(1e-9, 's')) # get time in ns
 width = 10.0 # nm
 v = 25.0 # nm/ns = m/s
 H_amplitude = 4.0e6*math.sin(math.pi*t) # A/m
 center = (v*t, 20, 10)
 print "CENTER IN", center
 def H(r):
 x, y, z = [ri/1e-9 - ci for ri, ci in zip(r, center)]
 factor = H_amplitude*math.exp(-(x*x + y*y + z*z)/(width*width))
 return [0, 0, -factor]

 sim.set_H_ext(H, unit=SI('A/m'))

set_H(sim)

sim.set_params(stopping_dm_dt=0*degrees_per_ns)

sim.relax(save=[('fields', every('time', SI(200e-12, 's'), first=t0[0]))],
 do=[(set_H, every('time', SI(50e-12, 's'), first=t0[0])),
 ('exit', at('time', SI(6000e-12, 's')))])

Here is the magnetisation at the beginning of the simulation, after
the first relax command (whose purpose is just to find the zero field
magnetisation configuration):

[image: ../_images/before.png]
and here is the magnetisation after the write-head has passed over the
cubes:

[image: ../_images/after.png]

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.15. Example: two different magnetic materials

In this example, we study the dynamics of a simple system consisting
of two 15 nm x 15 nm x 15 nm cubes close to one another (with 2 nm
spacing along the x-axis). We take the right cube to be made of
PermAlloy and the left cube to be made of Cobalt, with the magnetic
anisotropy axis pointing in z-direction. The mesh has been generated
with `Netgen`_ from the geometry file two_cubes.geo.

[image: ../_images/cubes.png]
We use the two_cubes.py script to carry out the simulation:

import nmag
from nmag import SI, every, at

sim = nmag.Simulation()

define magnetic material Cobalt (data from OOMMF materials file)
Co = nmag.MagMaterial(name="Co",
 Ms=SI(1400e3, "A/m"),
 exchange_coupling=SI(30e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0,0,1], K1=SI(520e3, "J/m^3")))

define magnetic material Permalley
Py = nmag.MagMaterial(name="Py",
 Ms=SI(860e3,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

load mesh
sim.load_mesh("two_cubes.nmesh.h5",
 [("cube1", Py),("cube2", Co)],
 unit_length=SI(1e-9,"m")
)

set initial magnetisation along the
positive x axis for both cubes, slightly off in z-direction
sim.set_m([0.999847695156, 0, 0.01745240643731])

ns = SI(1e-9, "s") # corresponds to one nanosecond

sim.relax(save = [('averages', every('time', 0.01*ns)),
 ('fields', every('time', 0.05*ns) | at('convergence'))])

The script is very similar to the one used in Example 2: Computing the time development of a system. However,
here we have two materials. The related changes are that we define two
magnetic materials, and assign them to objects Co and Py.

When loading the mesh:

sim.load_mesh("two_cubes.nmesh.h5",
 [("cube1", Py),("cube2", Co)],
 unit_length=SI(1e-9,"m")
)

we need to assign regions 1 and 2 in the mesh file (which correspond
to the two cubes) to the materials. This is done with this list of tuples:

[("cube1", Py),("cube2", Co)]

The first list entry is ("cube1", Py) and tells nmag that we would
like to refer to the region 1 as cube1, and that we would like to
assign the material Py to this region. This entry refers to region
1 because it is the first entry in the list.

The second list entry is ("cube2", Co) and tells nmag that we
would like to refer to the region 2 as cube2, and that we would
like to assign the material Co to this region.

If there was a region 3 in the mesh file, we would add a third list
entry, for example (“cylinder”,Co) for a Co cylinder.

Note that at this stage of nmag, the region name (such as cube1,
cube2, etc) are not used in the simulation, apart from diagnostic
purposes in progress messages.

Physically, what happens in this system is that the magnetisation of
the Cobalt cube aligns rather fast with the anisotropy direction and
then slowly forces the magnetisation of the PermAlloy cube into the
opposite direction (through the action of the stray field) to minimise
total energy of the configuration.

The Initial magnetisation is taken to point in x-direction. As this is an
unstable equilibrium direction for the magnetisation anisotropy of the
Cobalt cube, we slightly distort the initial magnetisation by adding a
tiny component in +z-direction.

It is instructive to compare the Fields and Subfields for this
particular example with the list of fields and subfields for a
single-material simulation. In effect, all the fields that are related
to the properties of some particular magnetic component carry multiple
subfields. In particular, there is only one H_ext field, as the
externally applied field is experienced in the same way by all
materials, but the M*H energy density associated with H_ext
has a dependency on the magnetic component (through M), so we have
two subfields E_ext_Py and E_ext_Co in the field E_ext.

The situation is virtually identical with H_demag/E_demag and
the related charge density rho and magnetic scalar potential
phi. All the other relevant fields in this example turn out to be
related to a particular magnetic component.

	Field
	Subfield(s)
	Comment

	m
	m_Py, m_Co
	normalised magnetisation

	M
	M_Py, M_Co
	magnetisation

	H_total
	H_total_Py, H_total_Co
	total effective field

	H_ext
	H_ext
	external (applied) field (only one)

	E_ext
	E_ext_Py, E_ext_Co
	energy density of Py due to external field

	H_anis
	H_anis_Py, H_anis_Co
	crystal anisotropy field

	E_anis
	E_anis_Py, E_anis_Co
	crystal anisotropy energy density

	H_exch
	H_exch_Py, H_exch_Co
	exchange field

	E_exch
	E_exch_Py, E_exch_Co
	exchange energy

	H_demag
	H_demag
	demagnetisation field (only one)

	E_demag
	E_demag_Py, E_demag_Co
	demagnetisation field energy density

	phi
	phi
	scalar potential for H_demag

	rho
	rho
	magnetic charge density (div M)

	H_total
	H_total_Py, H_total_Co
	total effective field

The issue of multiple magnetic components becomes much more
interesting when we study multi-component alloys, i.e. if we associate
more than one type of magnetisation to a single region in the
mesh. Usually, we will then also have to introduce some “generalized
anisotropy energy” term of the form E=c*M_a*M_b that depends on
more than a single magnetisation subfield (see More than one magnetic material, exchange coupled).

Once we have run the simulation using:

nsim two_cubes.py

we can analyse the results. For example, we can plot the magnetisation
of the two materials against time:

[image: ../_images/results.png]
The blue lines represent the (soft) permalloy and the black lines show
the (hard) cobalt. Each thick line denotes the z-component of the corresponding material.

This plot has been created with the following command:

ncol two_cubes 0 m_Co_0 m_Co_1 m_Co_2 m_Py_0 m_Py_1 m_Py_2 | xmgrace -nxy -

We can further convert the field data into vtk files:

nmagpp --vtk=two_cubes.vtk two_cubes_dat.h5

and visualise their content. We start with the initial configuration
(Permalloy in blue on the left, Cobalt in black on the right, only 10
percent of the actual magnetisation vectors on the mesh nodes are
shown to improve the readability of the plots):

Time T=0 ps:

[image: ../_images/vis1.png]
Time T=1e-10s=0.1ns: Cobalt is already pointing up, i.e. in the
direction of the anisotropy axis, while Permalloy has just started to
rotate.

[image: ../_images/vis2.png]
Time T=0.3ns: Cobalt has reached its final configuration (pointing up)
and Permalloy is still rotating, but already pointing down (to
minimise the interaction energy between the cubes to the
demagnetisation stray fields).

[image: ../_images/vis3.png]
Time T=1 ns: The final configuration has been reached.

[image: ../_images/vis4.png]

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.16. Example: Larmor precession

This example shows how to derive the period of the Larmor precession
for the magnetisation and compare the result from simulation to the
analytical solution. It is inspired by an example from the `magpar`_
documentation
(http://magnet.atp.tuwien.ac.at/scholz/magpar/doc/html/examples.html#sphere_larmor).

We us the larmor.py script:

import nmag
from nmag import SI, every, at, si

#create simulation object and switch off
#the computation of the demagnetising field
sim = nmag.Simulation(do_demag = False)

define magnetic material so that Js = mu0*Ms = 1 T
Py = nmag.MagMaterial(name="Py",
 Ms=1.0*si.Tesla/si.mu0,
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping = SI(0.0)
)
load mesh
sim.load_mesh("sphere1.nmesh.h5",
 [("sphere", Py)],
 unit_length=SI(1e-9,"m")
)

set initial magnetisation
sim.set_m([1,1,1])

set external field
Hs = nmag.vector_set(direction=[0.,0.,1.],
 norm_list=[1.0],
 units=1e6*SI('A/m')
)

ps = SI(1e-12, "s") # ps corresponds to one picosecond

let the magnetisation precess around the direction of the applied field
sim.hysteresis(Hs,
 save=[('averages', every('time', 0.1*ps))],
 do=[('exit', at('time', 300*ps))])

We turn off computation of the demagnetising field:

sim = nmag.Simulation(do_demag = False)

and set the damping term in the LLG equation to zero:

llg_damping = SI(0.0)

We set saturation magnetisation to Js = 1 T (see Library of useful si constants):

Ms=1.0*si.Tesla/si.mu0

We use a sphere as the magnetic object and, starting from a uniform
magnetic configuration along the [1,1,1] direction:

sim.set_m([1,1,1])

To compute the time development in the presence of a static field pointing in the z-direction, we ‘’abuse’’ the hysteresis command (because this way we can conveniently save the data at equidistant time intervals). To do this, we need to find the sequence of applied fields (here it is only one, of course):

Hs = nmag.vector_set(direction=[0.,0.,1.],
 norm_list=[1.0],
 units=1e6*SI('A/m')
)

and then use the hysteresis command:

sim.hysteresis(Hs,
 save=[('averages', every('time', 0.1*ps))],
 do=[('exit', at('time', 300*ps))])

The hysteresis command will save the averages (which is what we need
to for the fit below) every 0.1 pico seconds. Once we reach the time
of 300 pico seconds, the method will exit.

The dynamics of the magnetisation is driven only by the
Zeeman effect, with a torque:

\[{\mathbf T} = \mu_0 {\mathbf m} \times {\mathbf H}_{\rm ext}\]

acting on the magnetisation m which is orthogonal to both m and H;
thus causing the magnetisation to precess around the applied field
direction. The frequency of the precession, called f_Larmor, is given
by:

\[f_{\rm Larmor} = \frac{\gamma}{2\pi} \cdot \mu_0 \left|{\mathbf H}_{\rm ext}\right|\]

where the parameter gamma, called gyromagnetic ratio, is taken to
have the following value (see [1]):

\[\gamma = \frac{g \cdot e}{2m_e} \approx 1.7588 \times10^{11}\,{\rm T}^{-1}{\rm s}^{-1}\]

so that f_Larmor = 35.176 GHz and the period T = 1/f_Larmor =
0.0284284 ns.

We save the average magnetisation every 0.1 ps in order to have a
sufficient number of points to compute the period T.

We execute the script as usual:

$ nsim larmor.py

and extract the (spatially averaged) magnetisation data for all save time steps:

$ ncol larmor time m_Py_0 m_Py_1 m_Py_2 > data.txt

Using `Gnuplot`_, we extract the value of the Larmor period T from the x-component of the magnetisation:

$ gnuplot

and the following command plots the x component of the magnetisation
as a function of the simulation time, together with a fit for a
function f(x) (where x represents time):

gnuplot> f(x) = A*sin(2*pi*x/B + C) + D
gnuplot> B = 30
gnuplot> fit f(x) "data.txt" u ($1/1e-12):2 via A,B,C,D
gnuplot> plot "data.txt" u ($1/1e-12):2, f(x)

The result is the following image:

[image: ../_images/larmor_plot.png]
The values for B in the fit, which corresponds to the unknown period
T, is initially set to 30 in order to help `Gnuplot`_ fit the curve.
Such fit on T gives the value 28.4293; this value
corresponds to 0.0284293 ns when rescaled by the 10e12 factor used for
the plotting, and shows a difference starting from the 5th digit when
compared to the analytical solution of 0.0284284 ns.

	[1]	See the OOMMF manual, and in Werner Scholz thesis, after (3.7), llg_gamma_G = 2.210173e5 m/(As).

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.17. Example: 1D periodicity

2.17.1. Introduction periodic boundary conditions (“macro geometry”)

Concerning the simulation of periodic magnetic structures, there are a
few somewhat subtle issues to be taken into account, both with respect
to the demagnetising and the exchange field.

The issue with the exchange field is that we may encounter situations
where the magnetic material crosses the boundary of an elementary
cell: a periodic array of non-touching spheres in a cubic lattice is
fundamentally different from its complement, a cubic lattice made of
spherical holes, insofar as that in the latter case, it is impossible
to do a simulation using periodic boundary conditions without
identifying degrees of freedom that live on boundaries of the
simulation cell. |Nmag| can deal with this automatically, provided the
mesh file contains periodicity information, i.e. data on how to
identify nodes on exterior faces.

As for the demagnetising field, the most important problem is that one
cannot ignore the effect of the faraway boundaries of the system: a
100 nm x 100 nm x 100 nm cell made of magnetic material in the center
of a large (three-dimensional) periodic array will experience very different demagnetising
fields depending on the shape of the outer boundaries of this array.
Assuming spatially constant magnetisation, if these cells form a
“macroscopic” (tree-dimensional) sphere, H_demag will be -1/3 M, while for a flat box,
H_demag may be very close to -M. |Nmag| takes these “macro-geometry”
effects into account by allowing the user to provide a geometrical
layout for a finite number (say, 100-1000) of cells that approximates
the shape of the faraway outer boundary of the system.

The macro geometry approach is described in [1] which may serve as a
more detailed instruction to the concept.

	[1]	Hans Fangohr, Giuliano Bordignon, Matteo Franchin, Andreas Knittel, Peter A. J. de Groot, Thomas Fischbacher. A new approach to (quasi) periodic boundary conditions in micromagnetics: the macro geometry, Journal of Applied Physics 105, 07D529 (2009), Online at http://link.aip.org/link/?JAP/105/07D529

2.17.2. 1d example

In this example, we simulate a single cell in the middle of a long
one-dimensional periodic array where for the purpose of computing the
demagnetising field, we take three extra copies of this cell to the
left and three copies to the right along the x axis. (For real
applications, one would use more copies. The only effect of additional
copies are to increase the setup time needed to compute an internal
boundary/boundary interaction matrix.)

The next Example: 2D periodicity demonstrates the macro geometry
concept for a thin film. This is followed by the Spin-waves example
which includes exchange coupling between periodic copies (and is of
more practical value).

The mesh of the central simulation cell used is described in cube.geo which reads:

algebraic3d

prism
solid prism = orthobrick (-7.50, -7.50, -7.50; 7.50, 7.50, 7.50) -maxh = 1.8000;
tlo prism;

Note that the mesh is centered around the origin. This is recommended for periodic simulations. (We need to document this better.) The resulting mesh is this (the periodic copies are not shown):

[image: ../_images/mesh.png]

The script periodic1.py reads:

import nmag
from nmag import SI

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m")
)

size of simulation cell, plus extra spacing
to avoid exchange interaction across interfaces
between repeated copies of the simulation cell.
x_lattice = 15.01 # the spacing is 0.01
y_lattice = 0.0
z_lattice = 0.0

list to store the lattice points where the periodic
copies will be placed
lattice_points = []

for xi in range(-3,4):
 lattice_points.append([xi*x_lattice,0.0*y_lattice,0.0*z_lattice])

create data structure pbc for this macro geometry
pbc = nmag.SetLatticePoints(vectorlist=lattice_points, scalefactor=SI(1e-9,'m'))

#create simulation object, passing macro geometry data structure
sim = nmag.Simulation(periodic_bc=pbc.structure)

load mesh
sim.load_mesh("cube1.nmesh.h5", [("repeated-cube-1D", Py)], unit_length=SI(1e-9,"m"))

set initial magnetisation along the periodic axis
sim.set_m([1.0,0,0])

compute the demagnetising field
sim.advance_time(SI(0,"s"))

probe demag field at the centre of the cube, function
returns an SI-Value ('siv')
H_demag = sim.probe_subfield_siv('H_demag', [0,0,0])

print "H_demag_x at centre of cube = ", H_demag[0]
print "H_demag_y at centre of cube = ", H_demag[1]
print "H_demag_z at centre of cube = ", H_demag[2]

Setup can be splitted into three steps. In the first step we set the
x_lattice parameter to be slightly larger than the dimension of the
unit cell (in order not to have any overlap between the cells) and set
the y_lattice and z_lattice parameters to zero to indicate no
periodidicity along these directions

x_lattice = 15.01 # the spacing is 0.01
y_lattice = 0.0
z_lattice = 0.0

In the second step we define the lattice points where we want
the periodic copies to be:

for xi in range(-3,4):
 lattice_points.append([xi*x_lattice,0.0*y_lattice,0.0*z_lattice])

and in the third step we define the object whose structure attribute
will be used as the parameter in the definition of the simulation
object

pbc = nmag.SetLatticePoints(vectorlist=lattice_points, scalefactor=SI(1e-9,'m'))

#create simulation object
sim = nmag.Simulation(periodic_bc=pbc.structure)

The remaining part of the script computes the demagnetisation field at
the center of the cube. This calculation can be carried out for a
varying number of copies of the simulation cell. The next figures show
components of demagnetising field in the center of the cube as a
function of the number of periodic copies. As in the code above, we
impose an uniform magnetisation along the periodic x-axis. The first
figure shows the demagnetisation field along the x-axis, and the
second figure along the y-axis. In both figures, we have added green
crosses that have been obtained by computing the demagfield using
OOMMF (where in OOMMF we have actually made the simulation cell larger
and larger to represent the growing number of periodic copies).

[image: ../_images/periodic1_in_axis.png]
Demagnetising field as a function of the number of periodic
copies with the magnetisation aligned along the periodic axis.

[image: ../_images/periodic1_out_of_axis.png]
Demagnetising field as a function of the number of periodic
copies with the magnetisation aligned along an axis orthogonal
to the periodic one.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.18. Example: 2D periodicity

This example is another application of the macro-geometry feature,
where we now deal with a 2D “thin film” system. The unit cell is a
30x10x10 nm^3 prism

[image: ../_images/mesh1.png]
where we take 10 copies in x- and 40 copies in y-direction to create
the macro geometry.

The script no_periodic.py simulates behaviour of
just the unit cell of size 30x10x10 nm^3 (without any periodic
copies):

import nmag
from nmag import SI, every, at

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m")
)

#create simulation object
sim = nmag.Simulation()

load mesh
sim.load_mesh("prism.nmesh.h5", [("no-periodic", Py)], unit_length=SI(1e-9,"m"))

set initial magnetisation
sim.set_m([1.,1.,1.])

loop over the applied field
s = SI(1,"s")

sim.relax(save=[('averages','fields', every('time',5e-12*s) | at('convergence'))])

and the relaxation curves are obtained via:

set term postscript enhanced color
set out 'no_periodic.ps'
set xlabel 'time (s)'
set ylabel 'M / Ms'
plot 'plot_no_periodic.dat' u 1:2 ti 'Mx' w lp, \
 'plot_no_periodic.dat' u 1:3 ti 'My' w lp, \
 'plot_no_periodic.dat' u 1:4 ti $

which creates the following plot:

[image: ../_images/no_periodic.png]
From this plot we can see that with using only the unit cell the
magnetisation aligns along the x-axis at equilibrium.

We now move to the macro geometry of a thin film with dimensions 400x300x10nm^3 which is realised in periodic2.py.

import nmag
from nmag import SI, every, at

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m")
)

size of the simulation cell, plus extra spacing
x_lattice = 30.01 # the spacing is 0.01 to avoid exchange coupling
y_lattice = 10.01 # between repeated copies of the simualtion cell
z_lattice = 0.0

list to store the lattice points where the periodic
copies of the simulation cell will be placed
lattice_points = []

for xi in range(-4,6):
 for yi in range(-19,21):
 lattice_points.append([xi*x_lattice,yi*y_lattice,0.0*z_lattice])

create data structure pbc for this macro geometry
pbc = nmag.SetLatticePoints(vectorlist=lattice_points, scalefactor=SI(1e-9,'m'))

#create simulation object, passing macro geometry data structure
sim = nmag.Simulation(periodic_bc=pbc.structure)

load mesh
sim.load_mesh("prism.nmesh.h5", [("repeated-prism-2D", Py)], unit_length=SI(1e-9,"m"))

set initial magnetisation
sim.set_m([1.,1.,1.])

loop over the applied field
s = SI(1,"s")
sim.relax(save=[('averages', 'fields', every('time',5e-12*s) | at('convergence'))])

As in the previous example, we first define the three unit vectors of
the lattice, again slightly larger than the dimension of the unit cell
to avoid overlapping (and thus to eleminate any exchange coupling
across the interfaces for this demonstration of the demagnetisation effects):

x_lattice = 30.01 # the spacing is 0.01
y_lattice = 10.01 # the spacing is 0.01
z_lattice = 0.0

Then we define where the copies will be placed:

for xi in range(-4,6):
 for yi in range(-19,21):
 lattice_points.append([xi*x_lattice,yi*y_lattice,0.0*z_lattice])

copies of the system along the x-axis
pbc = nmag.SetLatticePoints(vectorlist=lattice_points, scalefactor=SI(1e-9,'m'))

The simulation cell is (always) the one at the (0,0,0) lattice
point. The for loops therefore place 4 copies of the simulation cell
in the negative x direction [i.e. (-4,0,0), (-3,0,0), (-2,0,0), and
(-1,0,0)] and 5 in the positive the x direction [i.e. (1,0,0),
(2,0,0), (3,0,0), (4,0,0), (5,0,0)]. The translation vector (0,0,0)
corresponds to the actual simulation cell.

Similarly, the inner for loop places 20 copies along the positive
y-axis and 19 along the negative one.

We set the same initial configuration as before, with a uniform
magnetisation along [1,1,1], and let the system evolve towards the
equilibrium.

The outcome is shown in the following figure:

[image: ../_images/periodic2.png]
where we notice that the final configuration is now with the
magnetisation aligned along the (negative) y axis, and not along the x
axis as before. The alignment along the y-direction is expected, as
now the macro geometry has a total size of 300.09 nm times 400.39 nm
(30 nm x 10 copies plus spacings along the x direction times 10 nm x
40 copies plus spacings along the y direction) times 10nm (no periodic
copies along the z direction), so the longest side now is along the y
direction. The demagnetisation energy of the macro geometry drives the
alignment of the magnetisation with the y-direction.

Other usage examples include this study [1] of an array of interacting triangular rings.

	[1]	Giuliano Bordignon, Thomas Fischbacher, Matteo Franchin, Jurgen P. Zimmermann, Peter A. J. de Groot, Hans Fangohr, Numerical studies of demagnetizing effects in triangular ring arrays, Journal of Applied Physics 103 07D932 (2008), online at http://eprints.soton.ac.uk/50995/

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.19. Example: Spin-waves in periodic system

Starting from a magnetisation out of equilibrium, we study the time
development of the magnetisation, and track -visually- the spin waves.

The geometry is a thin film with dimensions 30 nm x 9 nm x 0.2 nm along
the x,y and z axes, respectively. The mesh is centered at (0,0,0)
and periodic along the x direction, so that the nodes with coordinates
(15.0,y,z) will be considered as equivalent to the nodes with coordinates (-15.0,y,z).

[image: ../_images/periodic_mesh.png]
The mesh is contained in periodic.nmesh and
has been produced using `Netgen`_ (from periodic.geo) and the nmeshmirror command to create required periodic structure

$ nmeshmirror netgen.nmesh 1e-6 1e-6 -1,0,0 periodic.nmesh

2.19.1. Relaxation script

To see how the system relaxes, we use the following
script (spinwaves.py):

import nmag
from nmag import SI
import math

define magnetic material
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping = SI(0.02,"")
)

lattice spacings along the main axes;
the value must be zero for no periodic copies,
equal to the mesh dimension along the
given axis otherwise
x_lattice = 30.0
y_lattice = 0.0
z_lattice = 0.0

list to store the lattice points where the periodic
copies will be placed
lattice_points = []

for xi in range(-1,2):
 lattice_points.append([xi*x_lattice,0.0*y_lattice,0.0*z_lattice])

copies of the system along the x-axis
pbc = nmag.SetLatticePoints(vectorlist=lattice_points, scalefactor=SI(1e-9,'m'))

#create simulation object
sim = nmag.Simulation(periodic_bc=pbc.structure)

load mesh
sim.load_mesh("periodic.nmesh", [("periodic-film", Py)], unit_length=SI(1e-9,"m"))

print ocaml.mesh_plotinfo_periodic_points_indices(sim.mesh.raw_mesh)

function to set the magnetisation
def perturbed_magnetisation(pos):
 x,y,z = pos
 newx = x*1e9
 newy = y*1e9
 if 8<newx<14 and -3<newy<3:
 # the magnetisation is twisted a bit
 return [1.0, 5.*(math.cos(math.pi*((newx-11)/6.)))**3 *\
 (math.cos(math.pi*(newy/6.)))**3, 0.0]
 else:
 return [1.0, 0.0, 0.0]

set initial magnetisation
sim.set_m(perturbed_magnetisation)

let the system relax generating spin waves
s = SI("s")
from nsim.when import every, at
sim.relax(save=[('averages','fields', every('time', 0.05e-12*s) | at('convergence'))],
 do=[('exit', at('time', 10e-12*s))])

To execute this script, we call the nsim executable, for example (on linux):

$ nsim spinwaves.py

As in the previous examples, we first need to import the modules
necessary for the simulation, define the material of the magnetic
object, load the mesh and set the initial configuration of the
magnetisation. Here, we start from a spatially non-homogeneous
configuration in order to excite spin waves. |Nmag| allows us to provide a
function to be sampled on the mesh that defines a particular
magnetisation configuration.

[image: ../_images/initial_magn.png]
In our case, we use the function

def perturbed_magnetisation(pos):
 x,y,z = pos
 newx = x*1e9
 newy = y*1e9
 if 8<newx<14 and -3<newy<3:
 # the magnetisation is twisted a bit
 return [1.0, 5.*(math.cos(math.pi*((newx-11)/6.)))**3 *\
 (math.cos(math.pi*(newy/6.)))**3, 0.0]
 else:
 return [1.0, 0.0, 0.0]

which is then passed on to set_m

set initial magnetisation
sim.set_m(perturbed_magnetisation)

2.19.2. Visualising the magnetisation evolution

Once the calculation has finished, we can see how the system relaxed
by means of snapshots of the magnetisation evolution.

The nmagpp command allows us to create vtk files
from the data saved with the save option in the relax method:

nmagpp --vtk=fields spinwaves

The first few frames that show the evolution of the magnetic
configuration are shown below.

[image: evolution-1]
Initial magnetisation configuration.

[image: evolution-2]
Magnetisation configuration after 0.15 ps. It is clearly visible
that the spin waves travel from the center of the disturbance to the
right and penetrate the system immediately from the left (due to the
periodic boundary conditions in the x-direction).

[image: evolution-3]
Magnetisation configuration after 0.25 ps.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.20. Example: post processing of saved field data

Suppose we have saved spatially resolved fields (as, for example, in
Example 2: Computing the time development of a system), and we would like to read those from the data file to
process the data further.

We can use the nmagpp tool if it provides the required functionality.

Alternatively, we can write a Python script that:

	reads the data from the _dat.h5 file

	carries out the required post processing and/or saves the data in
(another) format.

The program read_h5.py
demonstrates how to read the saved configuration with id=0 of the m_Py
subfield, and to print this to the screen.

import nmag

#read data, positions, and sites from h5 file
m=nmag.get_subfield_from_h5file('bar_dat.h5','m_Py',id=0)
pos=nmag.get_subfield_positions_from_h5file('bar_dat.h5','m_Py')
site=nmag.get_subfield_sites_from_h5file('bar_dat.h5','m_Py')

#can carry out some sanity checks (but is not necessary)
assert m.shape == pos.shape
assert len(m) == len(site)

#print the data
for i in range(len(m)):
 print site[i], pos[i], m[i]

The functions get_subfield_from_h5file,
get_subfield_positions_from_h5file and
get_subfield_sites_from_h5file allow in principle to retrieve all the
field data from the h5 files and stores this in the variables m,
pos, and site, respectively.

The program, when run like this:

$ nsim read_h5.py

in the Example 2: Computing the time development of a system directory, produces output starting as follows (assuming the bar_dat.h5 file exists):

[0] [0. 0. 0.] [0.70710677 0. 0.70710677]
[1] [3.00000000e-09 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[2] [6.00000000e-09 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[3] [9.00000000e-09 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[4] [1.20000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[5] [1.50000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[6] [1.80000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[7] [2.10000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[8] [2.40000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[9] [2.70000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[10] [3.00000000e-08 0.00000000e+00 0.00000000e+00] [0.70710677 0. 0.70710677]
[11] [3.00000000e-08 3.00000000e-08 1.00000000e-07] [0.70710677 0. 0.70710677]
[12] [3.00000000e-08 2.70000000e-08 1.00000000e-07] [0.70710677 0. 0.70710677]

We can see that the Site index is (here) just an integer, the position
(in nanometre) is shown as a triplet of three scalars, and the normalised
magnetisation is also a vector with three components.

The data (in the arrays m, site and position in this
example) can be manipulated as explained in the NumPy documentation,
because it is of type numpy array. Numpy provides a powerful matrix
processing environment.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.21. Example: Spin transfer torque (Zhang-Li model)

|Nmag| provides support for the Zhang-Li extension to the
Landau-Lifshitz-Gilbert (LLG) equation [1], in order to model the interaction
between a uniform electric current density and a spatially varying
magnetisation. The extened LLG equation reads

\[\frac{\partial \vec{M}}{\partial t} =
 -\gamma \, \vec{M} \times \vec{H}
 +\frac{\alpha}{M_{\mathrm{sat}}} \, \vec{M} \times \frac{\partial \vec{M}}{\partial t}
 -\frac{v}{M_{\mathrm{sat}}^2} \, \vec{M} \times
 \left(\vec{M} \times \hat{j} \cdot \nabla \vec{M} \right)
 -\frac{\xi v}{M_{\mathrm{sat}}} \, \vec{M} \times \hat{j} \cdot \nabla \vec{M}\]

where the first two terms on the right-hand side are the normal LLG equation, and the extra terms come from the Zhang-Li model, and

[image: ../_images/eq_zhangli_llg_d.png]
The central column shows the method which can be used to set
the field (Simulation.set_m or Simulation.set_H_ext) or
the name of the corresponding parameter in the material definition
(for example, mat = MagMaterial(Ms=SI(0.8e6, "A/m"), ...)).
The current density appears only throughout the quantity v, which
we define as:

\[v = \frac{P \; j \; \mu_B}{e \; M_{\mathrm{sat}} \; (1 + \xi^2)}\]

with:

[image: ../_images/eq_v_d.png]
In this and in the next examples we show how to set up a micromagnetic
simulation including such spin transfer torque effects.
We show how the current density can be specified and how the required
parameters can be included in the material definitions.

As a first example, we consider a thin Permalloy film which develops
a vortex in the center. We compute the dynamics of the vortex
as a response to the application of a current.

	[1]	S. Zhang and Z. Li, Roles of Nonequilibrium Conduction Electrons
on the Magnetization Dynamics of Ferromagnets, Physical Review
Letters 93, 127204 (2004), online at
http://link.aps.org/doi/10.1103/PhysRevLett.93.127204

2.21.1. Current-driven motion of a vortex in a thin film

The system under investigation is a 100 x 100 x 10 nm Permalloy film.
The mesh is stored in the file
pyfilm.nmesh.h5.

The simulation is subdivided in two parts:

	In part I, the system is
relaxed to obtain the initial magnetisation configuration when the
current is not applied, which is just a vortex in the center of
the film.

	In part II, the vortex magnetisation obtained in part I is
loaded and used as the initial magnetisation configuration. A current
is applied and the magnetisation dynamics is analysed by
saving periodically the data (the magnetisation, the other fields and
their averages).

Here we use two separate simulation scripts to carry out part I and
part II subsequentely. This is the approach that is easiest to
understand. Once the basic ideas have become clear, it is often a good
idea to write only one simulation script that carries out both part I
and part II. (Indeed many of the parameters, such as the saturation
magnetisation or the exchange coupling need to be specified in each of
the two scripts leading to possible errors: for example if one decides
to investigate a different material and changes the parameters just in
one file and forgets the other, etc.). In the next section
(Example: Current-driven magnetisation precession in nanopillars), we present
a more robust approach, where both part I and part II are executed by
just one script.

2.21.2. Part I: Relaxation

The first script carries out a normal micromagnetic simulation
(i.e. no spin transfer torque), and determines the relaxed
magnetisation configuration for a given geometry, material and initial
configuration. It saves the final magnetisation to disk. Here is the
full listing of relaxation.py
:

We model a bar 100 nm x 100 nm x 10 nm where a vortex sits in the center.
This is part I: we just do a relaxation to obtain the shape of the vortex.
import math, nmag
from nmag import SI, at
from nsim.si_units.si import degrees_per_ns

Define the material
mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.8e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_gamma_G=SI(0.2211e6, "m/A s"),
 llg_damping=1.0)

Define the simulation object and load the mesh
sim = nmag.Simulation()
sim.load_mesh("pyfilm.nmesh.h5", [("Py", mat_Py)], unit_length=SI(1e-9,"m"))

Set a initial magnetisation which will relax into a vortex
def initial_m(p):
 x, y, z = p
 return [-(y-50.0e-9), (x-50.0e-9), 40.0e-9]

sim.set_m(initial_m)

Set convergence parameters and run the simulation
sim.set_params(stopping_dm_dt=1.0*degrees_per_ns)
sim.relax(save=[('fields', at('step', 0) | at('stage_end'))])

Write the final magnetisation to file "vortex_m.h5"
sim.save_restart_file("vortex_m.h5")

After importing the usual Nmag module and helper objects, we define
the material, create the simulation object and load the mesh,
(similar to what is shown in previous examples):

Define the material
mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.8e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_gamma_G=SI(0.2211e6, "m/A s"),
 llg_damping=1.0)

Define the simulation object and load the mesh
sim = nmag.Simulation()
sim.load_mesh("pyfilm.nmesh.h5", [("Py", mat_Py)], unit_length=SI(1e-9,"m"))

Notice that the damping parameter llg_damping is set to a high value,
to allow for quick relaxation of the magnetisation.
We write a function initial_m that is being given the position of each
site in the mesh as a vector p with three components, and which returns
an initial magnetisation vector. This vector is chosen such that the initial
magnetisation that is described by this function is likely to relax into a
vortex configuration:

def initial_m(p):
 x, y, z = p
 return [-(y-50.0e-9), (x-50.0e-9), 40.0e-9]

The magnetisation at point p is obtained from a 90 degree rotation
of the vector which connects p to the center of the film.
This vector doesn’t have to be normalised: |Nmag| will take care of
normalising it for us.

We need to instruct the simulation object sim to use this function
to set the magnetisation:

sim.set_m(initial_m)

We set the criterion to be used to decide when the magnetisation has
relaxed. The value used here in set_params (i.e. one degree per
nanosecond) is the default value (so we could omit this, but we change
the value in the second part of this example):

sim.set_params(stopping_dm_dt=1.0*degrees_per_ns)

We finally run the simulation using the relax command until the
convergence criterion dm/dt < 1 degree per nanosecond is
fullfilled. In the process, we save spatially resolved data for all
fields at step 0, and the same data at the end of the stage
(i.e. when an equilibrium has been reached, just before the relax
function returns):

sim.relax(save=[('fields', at('step', 0) | at('stage_end'))])

We finally save the relaxed magnetisation to a file using the function
save_restart_file, so that we can use this in part 2 as the initial
configuration:

sim.save_restart_file("vortex_m.h5")

We can launch the script with the command:

$ nsim relaxation.py

The output files for this simulation will have the prefix relaxation in
their names. The script saves the magnetisation at the beginning
(before relaxation) and at the end (after relaxation). The magnetisations
can be extracted and saved into vtk files using the command
nmagpp relaxation --vtk=m.vtk, as usual. MayaVi can then be used
to show the initial magnetisation (as described by the initial_m function):

[image: zhangli-1]

The magnetisation at the end of the relaxation process:

[image: zhangli-2]

The relaxed vortex is much smaller than the initial one. The
important thing to notice is that such a magnetisation configuration
has now been saved into the file vortex_m.h5 which will be used as
the initial magnetisation for part II of this simulation, where we
study the current driven dynamics of the vortex.

2.21.3. Part II: Current driven dynamics

For part II we need to use a slightly modified version of the script
used for part I. Here is the full listing of
stt.py:

We model a bar 100 nm x 100 nm x 10 nm where a vortex sits in the center.
This is part II: we load the vortex from file and apply a spin-polarised current

import nmag
from nmag import SI, every, at

Define the material
mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.8e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_gamma_G=SI(0.2211e6, "m/A s"),
 llg_polarisation=1.0,
 llg_xi=0.05,
 llg_damping=0.1)

Define the simulation object and load the mesh
sim = nmag.Simulation()
sim.load_mesh("pyfilm.nmesh.h5", [("Py", mat_Py)], unit_length=SI(1e-9,"m"))

Set the initial magnetisation: part II uses the one saved by part I
sim.load_m_from_h5file("vortex_m.h5")
sim.set_current_density([1e12, 0, 0], unit=SI("A/m^2"))

sim.set_params(stopping_dm_dt=0.0) # * WE * decide when the simulation should stop!

sim.relax(save=[('fields', at('convergence') | every('time', SI(1.0e-9, "s"))),
 ('averages', every('time', SI(0.05e-9, "s")) | at('stage_end'))],
 do = [('exit', at('time', SI(10e-9, "s")))])

We now discuss the script with particular emphasis on the differences
with the first one. One difference lies in the material definition:

Define the material
mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.8e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_gamma_G=SI(0.2211e6, "m/A s"),
 llg_polarisation=1.0,
 llg_xi=0.05,
 llg_damping=0.1)

Here we use two new arguments for the MagMaterial class.
The first is llg_polarisation which is used to specify the spin polarisation
of the conduction electrons inside the given material.
The second, llg_xi, is used to specify the degree of non-adiabaticity.
Note that for the damping parameter, llg_damping, we are now using
a smaller value, 0.1 (these values are not realistic for Permalloy).

The script then continues by creating the simulation object
and loading the mesh (which is identical to the relaxation script shown in part I). The initial magnetisation is read from the vortex_m.h5 file:

Set the initial magnetisation: part II uses the one saved by part I
sim.load_m_from_h5file("vortex_m.h5")

Here we use the function load_m_from_h5file to load the magnetisation
from the file vortex_m.h5, which was created in part I by using
the function save_restart_file.
We set the current density:

sim.set_current_density([1e12, 0, 0], unit=SI("A/m^2"))

The current density has norm 10^12 A/m^2 and is aligned in the x
direction. We then disable the convergence check:

sim.set_params(stopping_dm_dt=0.0) # * WE * decide when the simulation should stop!

Here we decide that convergence should be reached when the magnetisation moves
less than 0.0 degrees per nanosecond. This cannot happen and hence convergence
is never reached: we’ll tell the relax method to exit after a fixed amount
of time has been simulated:

sim.relax(save=[('fields', at('convergence') | every('time', SI(1.0e-9, "s"))),
 ('averages', every('time', SI(0.05e-9, "s")) | at('stage_end'))],
 do = [('exit', at('time', SI(10e-9, "s")))])

We run the simulation for just 10 nanoseconds by forcing an exit with
('exit', at('time', SI(10e-9, "s"))). We also save the fields
every nanosecond and save the averages more often, every 50
picoseconds. The relax method will simulate a vortex “hit” by a spin
polarised current and will save the averages so that we can see how
the magnetisation changes in time.

To run the script (which takes of the order of half an hour) we use as usual:

$ nsim stt.py

The output files for this simulation will start with the prefix stt.
The script saves the average magnetisation periodically in time.
We can therefore plot it using the following gnuplot script:

set term postscript color eps enhanced
set out "m_of_t.eps"

set xlabel "time (ns)"
set ylabel "average magnetisation (10^6 A/m)"
plot [0:10] \
 "m_of_t.dat" u ($1*1e9):($2/1e6) t "<M_x>" w lp, \
 "" u ($1*1e9):($3/1e6) t "<M_y>" w lp, \
 "" u ($1*1e9):($4/1e6) t "<M_z>" w lp

to obtain the following graph:

[image: zhangli-3]

2.21.4. Standard problem

The simulation carried out here is a (coarse) version of the recently
proposed standard problem for spin transfer torque micromagnetic
studies [2].

	[2]	Massoud Najafi, Benjamin Kruger, Stellan Bohlens, Matteo Franchin, Hans Fangohr, Antoine Vanhaverbeke, Rolf Allenspach, Markus Bolte, Ulrich Merkt, Daniela Pfannkuche, Dietmar P. F. Moller, and Guido Meier, Proposal for a Standard Problem for Micromagnetic Simulations Including Spin-Transfer Torque, Journal of Applied Physics, in print (2009), preprint available at http://www.soton.ac.uk/~fangohr/publications/preprint/Najafi_etal_2009.pdf

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.22. Example: Current-driven magnetisation precession in nanopillars

This is the second example we provide in order to illustrate the usage
of the Zhang-Li extension to model spin-transfer-torque in |Nmag|.
While in the Current-driven motion of a vortex in a thin film example we tried to present two scripts (one for initial relaxation, and one for the spin torque transfer simulation),
sacrificing usability for the sake of clarity, here we’ll try to present
a real-life script, using the power of the Python programming language
as much as it is needed to achieve our goal.

[image: ../_images/nanopillar.png]

We consider a ferromagnetic nanopillar in the shape of a cylinder.
We assume that the magnetisation in the nanopillar is pinned in the two
faces of the cylinder along opposite directions: on the right face
the magnetisation points to the right, while on the left face it points
to the left. The magnetisation is then forced to develop a domain wall.
We then study how such an “artificial” domain wall interacts with a current
flowing throughout the cylinder, along its axis.

By “artificial” we mean that the domain wall is developed as a
consequence of the pinning, which we artificially impose. In real
systems, the pinning can be provided through interface exchange
coupling or may have a geometrical origin, in combination with
suitable material parameters. The situation we consider here is
described and studied in more detail in publications [1] and [2].

	[1]	(1, 2) Matteo Franchin, Thomas Fischbacher, Giuliano Bordignon, Peter de Groot, Hans Fangohr, Current-driven dynamics of domain walls constrained in ferromagnetic nanopillars, Physical Review B 78, 054447 (2008), online at http://eprints.soton.ac.uk/59253,

	[2]	(1, 2) Matteo Franchin, Giuliano Bordignon, Peter A. J. de Groot, Thomas Fischbacher, Jurgen P. Zimmermann, Guido Meier, Hans Fangohr, Spin-polarized currents in exchange spring systems, Journal of Applied Physics 103, 07A504 (2008), online at http://link.aip.org/link/?JAPIAU/103/07A504/1

2.22.1. Two simulations in one single script

The nanopillar is made of Permalloy and has the shape of a cylinder with
radius of 10 nm and length 30 nm. The mesh is loaded from the file
l030.nmesh.h5
which was created using `Netgen`_ from the file
l030.geo.

[image: ../_images/mesh3.png]
The simulation is subdivided into two parts, similarly to the previous
example:

	In part I, the system is relaxed to obtain the initial magnetisation
configuration when the current is not applied.

	In part II the current is applied to the artificial domain wall
whose shape was calculated in part I.

This time, however, we use just one single script to execute both
parts of the simulation in one go. In particular, we define a
function which takes some input parameters such as the current
density, the damping, etc and uses them to carry out a simulation. We
then call this function twice: once for part I and once for part
II.

The full listing of the script stt_nanopillar.py:

import nmag, os, math
from nmag import SI, every, at
from nsim.si_units.si import degrees_per_ns

l = 30.0 # The nanopillar thickness is 30 nm
hl = l/2 # hl is half the nanopillar thickness
relaxed_m_file = "relaxed_m.h5" # File containing the relaxed magnetisation
mesh_name = "l030.nmesh.h5" # Mesh name
mesh_unit = SI(1e-9, "m") # Unit length for space used by the mesh

def run_simulation(sim_name, initial_m, damping, stopping_dm_dt,
 j, P=0.0, save=[], do=[], do_demag=True):
 # Define the material
 mat = nmag.MagMaterial(
 name="mat",
 Ms=SI(0.8e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=damping,
 llg_xi=SI(0.01),
 llg_polarisation=P)

 # Create the simulation object and load the mesh
 sim = nmag.Simulation(sim_name, do_demag=do_demag)
 sim.load_mesh(mesh_name, [("np", mat)], unit_length=mesh_unit)

 # Set the pinning at the top and at the bottom of the nanopillar
 def pinning(p):
 x, y, z = p
 tmp = float(SI(x, "m")/(mesh_unit*hl))
 if abs(tmp) >= 0.999:
 return 0.0
 else:
 return 1.0
 sim.set_pinning(pinning)

 if type(initial_m) == str: # Set the initial magnetisation
 sim.load_m_from_h5file(initial_m) # a) from file if a string is provided
 else:
 sim.set_m(initial_m) # b) from function/vector, otherwise

 if j != 0.0: # Set the current, if needed
 sim.set_current_density([j, 0.0, 0.0], unit=SI("A/m^2"))

 # Set additional parameters for the time-integration and run the simulation
 sim.set_params(stopping_dm_dt=stopping_dm_dt,
 ts_rel_tol=1e-7, ts_abs_tol=1e-7)
 sim.relax(save=save, do=do)
 return sim

If the initial magnetisation has not been calculated and saved into
the file relaxed_m_file, then do it now!
if not os.path.exists(relaxed_m_file):
 # Initial direction for the magnetisation
 def m0(p):
 x, y, z = p
 tmp = min(1.0, max(-1.0, float(SI(x, "m")/(mesh_unit*hl))))
 angle = 0.5*math.pi*tmp
 return [math.sin(angle), math.cos(angle), 0.0]

 save = [('fields', at('step', 0) | at('stage_end')),
 ('averages', every('time', SI(5e-12, 's')))]

 sim = run_simulation(sim_name="relaxation", initial_m=m0,
 damping=0.5, j=0.0, save=save,
 stopping_dm_dt=1.0*degrees_per_ns)
 sim.save_restart_file(relaxed_m_file)
 del sim

Now we simulate the magnetisation dynamics
save = [('averages', every('time', SI(9e-12, 's')))]
do = [('exit', at('time', SI(6e-9, 's')))]
run_simulation(sim_name="dynamics", initial_m=relaxed_m_file, damping=0.02,
 j=0.1e12, P=1.0, save=save, do=do, stopping_dm_dt=0.0)

After importing the required modules, we define some variables such as
the length of the cylinder, l; the name of the file where to put
the relaxed magnetisation, relaxed_m_file; the name of the mesh,
mesh_name; its unit length, mesh_unit:

l = 30.0 # The nanopillar thickness is 30 nm
hl = l/2 # hl is half the nanopillar thickness
relaxed_m_file = "relaxed_m.h5" # File containing the relaxed magnetisation
mesh_name = "l030.nmesh.h5" # Mesh name
mesh_unit = SI(1e-9, "m") # Unit length for space used by the mesh

These quantities are used later in the script. For example, knowing
the length of the nanopillar is necessary in order to set a proper
initial magnetisation for the relaxation. By making this a parameter
at the top of the program, we can change it there (if we wan to study
the same system for a different l), and just run the script again.

We define the function run_simulation: we teach Python how to run
a simulation given some parameters, such as the initial magnetisation,
the damping, the current density, etc. The function is defined
starting with the line:

def run_simulation(sim_name, initial_m, damping, stopping_dm_dt,
 j, P=0.0, save=[], do=[], do_demag=True):

The arguments of the function (the names inside the parenthesis) are
those parameters which must be choosen differently in part I and part II.
For example, we decided to make the current density j an argument
for the function run_simulation, because in part I j must be set
to zero, while in part II it must be set to some value greater than zero.
On the other hand, the saturation magnetisation does not appear
in the argument list of the function, since it has the same value
both in part I and part II.

A remark about the Python syntax: arguments such as sim_name
must be specified explicitly when using the function run_simulation,
while arguments such as P=0 have a default value (0.0 in this case)
and the user may omit them, meaning that Python will then use
the default values.

We skip the explanation of the body of the function and focus on the code which
follows it. We’ll return later on the implementation of run_simulation.
For now, the user should keep in mind that run_simulation just runs
one distinct micromagnetic simulation every time it is called (and what simulation this is will depend on the parameters given to the function). The function returns
the simulation object which it created.

We now comment the code which follows the function run_simulation:

If the initial magnetisation has not been calculated and saved into
the file relaxed_m_file, then do it now!
if not os.path.exists(relaxed_m_file):
 # Initial direction for the magnetisation
 def m0(pos):
 x, y, z = pos
 tmp = min(1.0, max(-1.0, float(SI(x, "m")/(mesh_unit*hl))))
 angle = 0.5*math.pi*tmp
 return [math.sin(angle), math.cos(angle), 0.0]

 save = [('fields', at('step', 0) | at('stage_end')),
 ('averages', every('time', SI(5e-12, 's')))]

 sim = run_simulation(sim_name="relaxation", initial_m=m0,
 damping=0.5, j=0.0, save=save,
 stopping_dm_dt=1.0*degrees_per_ns)
 sim.save_restart_file(relaxed_m_file)
 del sim

This piece of code carries out part I of the simulation: it relaxes
the system starting from a sensible initial guess for the
magnetisation and saves the relaxed magnetisation configuration so
that it can be used in part II.

In more detail, it starts by checking (using the function
os.path.exists) if a file containing the initial magnetisation
exists. If this is not the case, then the following indented block
will be executed, which computes and saves this initial
magnetisation. If the file exists, the whole indented block is
skipped, and we go straight to part II of the calculation.

In order to compute the relaxed configuration, an initial guess m0
for the magnetisation is defined. Such magnetisation linearly rotates
from left to right as the position changes from the left face to the
right face of the cylinder. Here x is the x coordinate of the
position vector p and tmp = min(1.0, max(-1.0, float(SI(x,
"m")/(mesh_unit*hl)))) is a continuous function which changes
linearly from -1 to 1 when going from the left to the right face,
keeping constant outside the cylinder.

In the code above we also define the variable save which is used
to specify when and what should be saved to disk. Here we save the
fields before and after the relaxation and save the averages every 5
picoseconds.

We then call the run_simulation function we defined above to relax
the magnetisation. This function returns the simulation object
sim, which we use to save the magnetisation using the
save_restart_file function.

Once this is done, we delete the simulation object, releasing resources
(memory) we have used for the simulation of part I. Note that for
the relaxation, we use j=0.0 (zero current density), damping=0.5
(fast damping, to reach convergence quickly) and
stopping_dm_dt=1.0*degrees_per_ns (this means that the simulation
should end when the magnetisation moves slower than 1 degree per
nanosecond).

The following part of the script deals with part II, the computation
of the current-driven dynamics:

Now we simulate the magnetisation dynamics
save = [('averages', every('time', SI(9e-12, 's')))]
do = [('exit', at('time', SI(6e-9, 's')))]

run_simulation(sim_name="dynamics",
 initial_m=relaxed_m_file,
 damping=0.02,
 j=0.1e12,
 P=1.0,
 save=save,
 do=do,
 stopping_dm_dt=0.0)

Here we decide to save the averages every 9 picoseconds and exit the
simulation after 6 nanoseconds. We use stopping_dm_dt=0.0 to
disable the convergence check (here we just want to simulate for a
fixed amount of time). We also use full spin polarisation, P=1.0,
we apply a current density of j=0.1e12 A/m^2 and use a realistic
damping parameter for Permalloy, damping=0.02. For the initial
magnetisation we pass the name of the file where the relaxed
magnetisation was saved in part I and we specify a simulation name
sim_name="dynamics" which is different from the one used for the
relaxation (which was sim_name="relaxation"). The simulation name
will decide the prefix of any filenames that are being created when
saving data. (If the simulation name is not specified, the name of the
script file is used.)

We now return to discuss the function run_simulation and see how
it carries out the actual simulations. First, the function defines the
material:

Define the material
mat = nmag.MagMaterial(
 name="mat",
 Ms=SI(0.8e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=damping,
 llg_xi=SI(0.01),
 llg_polarisation=P)

It uses the variable P which is passed as an argument to the function.
Then the simulation object is created and the mesh is loaded:

Create the simulation object and load the mesh
sim = nmag.Simulation(sim_name, do_demag=do_demag)
sim.load_mesh(mesh_name, [("np", mat)], unit_length=mesh_unit)

Note that sim_name is passed to the Simulation object,
allowing the user to use different prefixes for the output files
of the simulation. For example, if sim_name = "relaxation",
then the output files produced when saving the fields or their averages
to disk will have names starting with the prefix relaxation_.
On the other hand, if sim_name = "dynamics", the names of these files
will all start with the prefix dynamics_.

Using different simulation names allows us to save the data of part I
and part II in different independent files. The function continues
with the code above:

Set the pinning at the left and right face of the nanopillar
def pinning(p):
 x, y, z = p
 tmp = float(SI(x, "m")/(mesh_unit*hl))
 if abs(tmp) >= 0.999:
 return 0.0
 else:
 return 1.0
sim.set_pinning(pinning)

which is used to pin the magnetisation at the left and right faces of
the cylinder. Note here that x is the x component of the position
of the mesh site and that:

tmp = float(SI(x, "m")/(mesh_unit*hl))

is equal to -1 at the right face, and to +1 at the left face.
We then set the magnetisation. If initial_m is a string,
then we assume it is the name of the file and load the magnetisation
with the method load_m_from_h5file, otherwise we assume it is just
a function and set the magnetisation in the usual way, using the method
set_m:

if type(initial_m) == str: # Set the initial magnetisation
 sim.load_m_from_h5file(initial_m) # a) from file if a string is provided
else:
 sim.set_m(initial_m) # b) from function/vector, otherwise

We then set the current density along the x direction
(only if j is not zero):

if j != 0.0: # Set the current, if needed
 sim.set_current_density([j, 0.0, 0.0], unit=SI("A/m^2"))

Finally, we set tolerances, the stopping criterion and launch the simulation:

Set additional parameters for the time-integration and run the simulation
sim.set_params(stopping_dm_dt=stopping_dm_dt,
 ts_rel_tol=1e-7, ts_abs_tol=1e-7)
sim.relax([None], save=save, do=do)
return sim

The relax function carries out the simulation, taking into account the stopping criterion and save and do actions. Finally, the function returns the simulation object which it created.

2.22.2. Results: precession of the magnetisation

We launch the script with:

$ nsim stt_nanopillar.py

The script runs both part I (output files starting with relaxation_)
and part II (output files starting with dynamics_).
The relaxed magnetisation can be extracted and saved into a vtk file using
the command nmagpp relaxation --vtk=m.vtk. MayaVi can then be used
to obtain the following picture:

[image: zhangli2-1]

We can now take a look at the results obtained for the dynamics.
The average magnetisation as a function of time can be extracted
using:

ncol dynamics time M_mat_0 M_mat_1 M_mat_2 > m_of_t.dat

We can use the following gnuplot script:

set term postscript color eps enhanced solid
set out "m_of_t.eps"

set xlabel "time (ns)"
set ylabel "average magnetisation (10^6 A/m)"
plot [0:6] \
 "m_of_t.dat" u ($1*1e9):($2/1e6) t "<M_x>" w l, \
 "" u ($1*1e9):($3/1e6) t "<M_y>" w l, \
 "" u ($1*1e9):($4/1e6) t "<M_z>" w l

and obtain the following graph:

[image: zhangli2-2]

The sinusoidal dependence of the y and z magnetisation components suggests
that the magnetisation rotates around the nanopillar axis with a frequency
which increases to approach its maximum value.

A more detailed discussion of results and interpretation is provided
in the publications [1] and [2] mentioned in section Example: Current-driven magnetisation precession in nanopillars.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.23. Mesh distortion for edge roughness simulation

The meshes used in micromagnetic simulations usually represent
idealized geometries (for example, a nanowire might be modeled using a
completely smooth cuboid mesh). Real-world materials, on the other
hand, possess imperfections on various scales caused by fabrication
processes (e.g., electron beam lithography or sputter
deposition). This can potentially have a significant impact on the
magnetization dynamics. The advantage of finite element-based
simulations is that such effects can be simulated (at least
qualitatively) by distorting the mesh in a suitable way. nmeshpp
provides a means of distorting a given mesh in order to imitate
roughness so that the resulting effects on simulations can be
explored. Note that at the moment only edge roughness is supported.
We first present an example in the following section and then go into
the details of the command line interface and how the distortion
process works.

The appropriate reference for this mesh distoration is Albert et al [2],
where the method is described and used to study domain walll motion in
the presence of edge roughness.

2.23.1. Example

Consider a nanowire with dimensions 800nm x 20nm x 5nm (for
convenience we provide the corresponding mesh in the file
nanowire_800x20x5.nmesh). [1]

We distort this mesh using the following command:

nmeshpp --distort 0.4 --correlation-length 2.0 --seed 23 nanowire_800x20x5.nmesh \
 nanowire_800x20x5_distorted.nmesh

Intuitively, what this command does is to randomly displace the
“front” and “rear” nodes of the mesh and to stretch/shrink the middle
bits accordingly. The details of this process, as well as meaning of
all the command line switches, are explained in the next section. The
original and distorted mesh look like this (only part of each mesh
is shown):

[image: ../_images/smooth_wire_3D_view.png]
[image: ../_images/rough_wire_3D_view.png]
This figure shows a smooth nanowire (top), and then the same mesh after having been distorted using the nmesh command shown above. The figure is taken from [2].

	[1]	The mesh file for the nanowire was produced using the examesh tool, which is included in the nmag distribution in the directory utils/cubicmesh/ (note that it needs to be compiled before it can be used - just cd into this directory and type make). The exact command used to produce the mesh file was examesh nanowire_800x20x5.nmesh,800:450,20:15,5:3.

2.23.2. Details and command line options

Preliminary remark: As mentioned above, nmeshpp can only produce
edge roughness at the moment. There is a slight chance that the user
interface might change in the future when more functionality (such as
surface roughness) is added.

In this section we go into the details of the distortion process and
explain the relevant command line options. The general usage is:

nmeshpp --front-rear-axis [X|Y|Z] --distort-along-axis [X|Y|Z] --distort D \
 --correlation-length C --seed S mesh_orig.nmesh mesh_distorted.nmesh

Only --distort, --correlation-length and the name of the input
mesh are required arguments.

The overall distortion process works as follows. First, the surface
nodes of the mesh are divided into “front” and “rear”, depending on
which side of the mesh they lie on. By default, this distinction is
based on their y-coordinate (as in the example in the previous
section), but this can be changed using the option
--front-rear-axis. Next, a univariate “distortion function”
f(x) is constructed based on the given command line parameters
(the details of this process will be explained in a moment). This
function specifies the amount by which each front node is displaced in
y-direction (as a function of the x-coordinate of the
node). Analogously, the rear nodes are displaced using a second,
independently constructed distortion function g(x) (so that both
sides of the mesh are distorted differently). The intermediate parts
of the mesh are stretched to fit nicely between the new distorted
sides.

The whole procedure is illustrated in the following picture (see
[2]). It shows a top view (i.e., along the z-axis) of the
rear part of the nanowire from the previous section. The left hand
side shows the original mesh, the right hand side shows the mesh after
distortion with the function g, which is depicted in the
middle. Note that the contour of the distorted mesh follows the
outline of g.

[image: ../_images/steps_illustrated.png]
The distortion functions f and g are constructed as
follows. First we pick equidistant nodes x_i along the x-axis
(note that these are just auxiliary entities and completely
independent from the nodes of the mesh). Then random values f(x_i)
and g(x_i) are assigned to each such node, chosen from a normal
distribution with mean 0 and a certain standard deviation that
determines the “amplitude” of the roughness. Finally, these random
values are interpolated smoothly to obtain the continuous distortion
functions f(x) and g(x). In order to make the randomization
reproducible, it is possible to specify a seed for the internal random
number generator (by passing any integer value as an argument to
--seed). Otherwise the output mesh is different each time because
the random number generator is seeded using the system time or
something similar.

The reason why we need these distortion functions at all and can’t
just randomly displace each mesh node individually is because then the
result would strongly depend on the mesh spacing and the overall
quality of the mesh. However, since we usually want roughness on a
scale independent from the mesh spacing, we need some kind of
correlation between the displacements of adjacent mesh nodes, hence
the need for the distortion functions.

The parameters in the construction of f and g are:

	the distance between the nodes x_i, which can be controlled
with the flag --correlation-length,

	the standard deviation of the underlying normal distribution,
which must be specified using the command line switch -d, or
--distort.

Note that depending on which edges of the mesh the roughness should be
applied to (and on the way the mesh is oriented in the coordinate
system), it may be necessary to apply the distortion in a direction
different from the y-direction and also to consider f and g as
functions of a different input axis (distinct from the x-axis). The
first can again be controlled using the option --front-rear-axis,
which was already mentioned above. The second can be adjusted using
--distort-along-axis. For instance, if the roughness should
displace the nodes in z-direction and if the amount of displacement
should be a function of their y-coordinates, the command line
arguments would be --front-rear-axis Z --distort-along-axis Y.

	[2]	(1, 2, 3) Maximilian Albert, Matteo Franchin, Thomas Fischbacher, Guido Meier, and Hans Fangohr, Domain wall motion in perpendicular anisotropy nanowires with edge roughness, J. Phys.: Condens. Matter 24 , 024219 (14 pages) (2012) [http://iopscience.iop.org/0953-8984/24/2/024219] (preprint pdf [http://www.soton.ac.uk/~fangohr/publications/postprint/Albert_etal_JPhysCondMat_2011.pdf])

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.24. Compression of the Boundary Element Matrix using HLib

2.24.1. Hierarchical Matrices in Micromagnetism

Nmag uses the hybrid finite element method/boundary element method
(hybrid FEM/BEM) to compute the demagnetisation field (as does
`Magpar`_). Not using this method, one would have to discretise a large
part of space arround the magnetic structure (ideally all
space). Using the hybrid FEM/BEM method, it is only necessary to
discretise (and solve the equations for the demag field on that
discretisation) those parts of space that are occupied by magnetic
material.

A disadvantage of the hybrid FEM/BEM method is that it involves the
assembly of a dense boundary element matrix B, whose number of
elements scales quadratically with the number of surface nodes N of
our finite element mesh, i.e. the matrix B has as many rows as there are
surface nodes N in the mesh (and also as many columns).

This is in particular an issue when studying flat structures such as
thin films. For example, imagine we model a thin film of side lengths
100 nm x 100 nm x 2nm. If we decide to double the side lengths to 200
nm x 200 nm x 2nm, then this roughly corresponds to an increase of
surface node numbers N by a factor of 4. The matrix B will then
grow in size by a factor 4^2=16 due to the doubling of the two side
lengths by a factor of 2. In practice, the memory requirements of the
matrix B often limit the size of a structure that can be modelled.

In order to improve the efficiency of the hybrid FEM/BEM, one can
employ techniques which involve some kind of approximation of B,
for example using hierarchical matrices.

The basic idea [http://www.mis.mpg.de/publications/other-series/ln/lecturenote-2103.html]
is to approximate submatrices of B by a data-sparse approximation
where possible (within user-provided tolerance margins). In general
the complexity of the storage requirements and execution time of
simple operations like the matrix-vector product scale as O(N*log(N)),
as compared to the quadratical costs N^2 using the standard matrix
representation. For the use of HLib hierarchical matrices in
micromagnetic simulations we are often mostly interested in the their
reduced memory requirements.

The library `HLib`_ contains implementations of this hierarchical matrix
methodology, and can be used with Nmag in order to run micromagnetic
simulations in a more memory efficient way (see for example Knittel
et al 105, 07D542 (2009) [http://link.aip.org/link/?JAPIAU/105/07D542/1], postprint pdf [http://www.soton.ac.uk/~fangohr/publications/postprint/Knittel_etal_JAP_105_07D542_2009.pdf]).
.

2.24.2. Installation of HLib

In order to be able to use the `HLib`_ library and to obtain the HLib source
code, you have to apply for an HLib licence as explained on
http://hlib.org/license.html.

Once the HLib authors grant a licence, they will send their HLib tarball. Nmag will have to be compiled from source (see install from source [http://nmag.soton.ac.uk/nmag/0.1/install/install_a.html]) in the presence of this tarball to make use of the HLib matrix compression. (Nmag will compile happily in the absence of this file, and in that case the boundary element matrix is stored ‘in the normal way’ as a full matrix.)

We describe the required steps for this in detail. We assume you
downloaded the HLib tarball and the Nmag tarball in your home
directory ~/ (but any other subdirectory will work fine). Then, if
you issue a ls command, you get something like:

me@mymachine:~/$ ls
HLib-1.3p19.tar.gz nmag-0.1-all.tar.gz

You can now untar the nmag tarball and enter the newly created directory:

me@mymachine:~/$ tar xzvf nmag-0.1-all.tar.gz
me@mymachine:~/$ cd nmag-0.1

Note that in this particular example we assume the Nmag version to be 0.1.
For later versions, you’ll have to change the tarball name and the paths
accordingly (e.g. nmag-X.Y.Z for version X.Y.Z).
Inside the directory nmag-0.1 there is a directory called
hlib-pkg and we need to copy (or move) the HLib tarball into this directory:

me@mymachine:~/nmag-0.1$ cp HLib-1.3p19.tar.gz hlib-pkg/

You can now compile Nmag with HLib support in the usual way:

me@mymachine:~/nmag-0.1$ make

The build system should recognise that the hlib-pkg directory contains
a tarball and should prompt you asking what to do:

me@mymachine:~/nmag-0.1$ make
bash ./patches/hlib/hlib-untar.sh ./hlib-pkg HLib-1.3p19.tar.gz && \
 rm -f .deps_hlib_patch && make .deps_hlib_install; true

 It seems you want to compile Nmag with HLib support
 I'll need your confirmation in order to proceed...

I found ./hlib-pkg/HLib-1.3p19.tar.gz
Is this the HLib tarball you want to use? (yes/no) yes

Type yes and ENTER. The build system should untar the HLib tarball, it
should patch it (HLib needs to be patched in order to be usable by Nmag)
and it should install it in the right location with respect to the Nmag
libraries. If all goes well, you should get an installation of Nmag which is
capable of using HLib for the compression of the BEM matrix.

As you see, the only additional step which is required with respect to the
normal procedure for compiling Nmag from source, is to put the HLib tarball
inside the directory nmag-0.1/hlib-pkg.

The current nmag release requires Hlib version 1.3p19, to support HLib
matrix compression.

2.24.3. Testing the HLib BEM Matrix compression

There is a test target make checkhlib which tests whether a demag
field can be computed using the HLib and compares this with the result
of the same calculation using a full BEM. If the deviations become large,
the test will fail. To run the test, do

me@mymachine:~/nmag-0.1$ make checkhlib

The test should take less than 5 minutes. If it passes, then it
appears that the hlib is used, and produces quantitatively appropriate
approximations of the true solution.

2.24.4. Using HLib example 1: Demagnetisation Field of a Sphere

The properties of a hierarchical matrix depend much on the settings of
different parameters and on the particular algorithm used to create
the low-rank approximations. In Nmag, we only use the HCA II
algorithm, which seems to be the most reliable amongst the commonly
used algorithms, being still very efficient (see for example Knittel et al 105,
07D542 (2009) [http://link.aip.org/link/?JAPIAU/105/07D542/1],
postprint pdf [http://www.soton.ac.uk/~fangohr/publications/postprint/Knittel_etal_JAP_105_07D542_2009.pdf]).

The performance and accuracy of the HCA II algorithm can be tuned by providing
a number of parameters, which are collected inside a HMatrixSetup object.
A default HMatrixSetup object is provided, where a reasonable choice of
these parameters is made. The default parameters can be overriden by users.

We point the reader to the documentation of the HMatrixSetup class
for a list and description of all avaliable parameters. The next
example shows how to use HLib with the default values for the setup of
the BEM matrix.

2.24.4.1. Using HLib with default parameters

The Nmag script sphere_hlib.py shows how Nmag can be used in order to compute
the demagnetisation field within a sphere with a radius of 50 nm.

import nmag
import time
from nmag import SI

When creating the simulation object, specify that the BEM hmatrix should be
set up by using the default parameters.
sim = nmag.Simulation(phi_BEM=nmag.default_hmatrix_setup)

Specify magnetic material, parameters chosen as in example 1
Py = nmag.MagMaterial(name="Py",
 Ms=SI(1e6, "A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"))

Load the mesh
sim.load_mesh('sphere.nmesh.h5',
 [('sphere', Py)],
 unit_length=SI(1e-9, 'm'))

Set the initial magnetisation
sim.set_m([1,0,0])

Save the demagnetisation field
sim.save_data(fields=['H_demag'])

Probe the demagnetisation field at ten points within the sphere
for i in range(-5,6):
 x = i*1e-9
 Hdemag = sim.probe_subfield_siv('H_demag', [x,0,0])
 print "x=", x, ": H_demag = ", Hdemag

In this first example, we use default parameters for setting up the BEM
matrix by passing the object nmag.default_hmatrix_setup to the
Simulation object:

sim = nmag.Simulation(phi_BEM=nmag.default_hmatrix_setup)

This command specifies that the BEM matrix should be set up using the default
parameters in nmag.default_hmatrix_setup.
(The actual values of the parameters can be visualised on the screen by simply
printing the object with import nmag; print nmag.default_hmatrix_setup.)

When running the simulation sphere_hlib.py using the usual command:

nsim sphere_hlib.py --clean,

it should print out the demagnetisation field at ten points along the line
(x,0,0):

x= -5e-09 : H_demag = [-333060.61988567741, -16.426569556599606, -63.649046900628299]
x= -4e-09 : H_demag = [-333061.67213255615, -17.81158234138228, -65.112039406898973]
x= -3e-09 : H_demag = [-333062.69422596297, -19.401486521725044, -66.015626464953897]
x= -2e-09 : H_demag = [-333062.72991753434, -20.940683675745074, -66.988296036794026]
x= -1e-09 : H_demag = [-333061.60282647074, -22.420106762492924, -68.042400926888646]
x= 0.0 : H_demag = [-333060.29023012909, -23.736721821840622, -68.984395930340639]
x= 1e-09 : H_demag = [-333058.66039082204, -24.758745874347209, -69.6797361890888]
x= 2e-09 : H_demag = [-333055.87727687479, -24.635979967196079, -70.705429412122513]
x= 3e-09 : H_demag = [-333054.17167091055, -24.9868363963913, -73.501799477569747]
x= 4e-09 : H_demag = [-333052.78687652596, -25.388604442091431, -76.097088958697071]
x= 5e-09 : H_demag = [-333051.43416558538, -25.507782471847442, -77.792885797356391]

As in Example 1: Demag field in uniformly magnetised sphere of our guided tour, we should obtain a constant
magnetic induction of about [333333,0,0] [A/m]. Deviations from that value
can be mainly ascribed to the discretisation errors of the finite
element method (rather than the error due to the approximation with
hierarchical matrices). To see this, we use sphere_fullBEM.py which carries out the same
calculation but uses the normal full BEM. It reports:

x= -5e-09 : H_demag = [-333065.71403658605, -5.2685406972238447, -55.70105442854085]
x= -4e-09 : H_demag = [-333067.37484881631, -4.2116117445407726, -57.778611300679266]
x= -3e-09 : H_demag = [-333068.83107133937, -3.7372238611028603, -59.825445387210245]
x= -2e-09 : H_demag = [-333069.28217968839, -2.9635031726006642, -62.513814422201456]
x= -1e-09 : H_demag = [-333067.6639511605, -1.5730916838594211, -66.546659227740889]
x= 0.0 : H_demag = [-333066.04572263273, -0.18268019511817793, -70.579504033280344]
x= 1e-09 : H_demag = [-333064.22835497675, 0.79797869001455679, -74.851480234723581]
x= 2e-09 : H_demag = [-333060.20872696047, 2.9088218728650852, -77.0823444044496]
x= 3e-09 : H_demag = [-333056.59267071093, 5.064110260421554, -80.187548021318634]
x= 4e-09 : H_demag = [-333052.97641355224, 7.2199889195136837, -83.294534914159939]
x= 5e-09 : H_demag = [-333051.27043353132, 9.4396856537516776, -85.662174893158024]

This shows that the error introduced by the HLib is of the order of 10
in 333333 (in this example). Note that the y and z component
theoretically should be zero (for both calculations: with and without
HLib), and that the error we see there (of the order of 60/333333 in
the z-component) is coming from approximating the spherical shape with
tetrahedra, and approximating the magnetisation with a piecewise
linear function (not primarily from using the HLib approximation of the BEM).

2.24.4.2. HLib Memory usage

Nmag will also provide information on the memory requirements for the
hierarchical matrix. First it will print to stdout (and here
exceptionally not write to the log file) the following lines to the
screen, which are each preceded by HLib:

HLib: Memory footprint of hierarchical matrix: 10.523720 MB.
HLib: Equivalent full matrix would require: 98.273628 MB.
HLib: The compression rate is 10.71%

The first line states the amount of memory required for the storage of the
hierarchical matrix, the second one states the equivalent memory requirements
when using the full boundary element matrix, and the last line gives the
corresponding compression rate. Furthermore Nmag creates the file
memory_info.dat, which in our example looks like:

Number of surface nodes: 3589
Size of hierarchical matrix: 10.52 MB
Total size of inadmissible leaves: 1.40 MB
Total size of admissible leaves: 8.96 MB

While the first two lines should be relatively self-explanatory, the third
line states the total amount of memory needed to store the matrix blocks
which cannot be approximated, while the fourth line gives the equivalent
number for the approximated matrix blocks. Additionally, one can obtain
the memory used for the hierarchical tree structure itself, by computing
the difference between the size of the hierarchical matrix and
the sum of the total sizes of the admissible and inadmissible leaves.

2.24.4.3. Changing the Parameters of HLib

Let us assume we want to run the simulation of the last section again, but this
time we would like to reduce the time needed to assemble our hierarchical
matrix. To achieve this, we coarsen the hierarchical tree by increasing the
parameter nmin to 50, reassign the parameter eps_aca to 1e-5 in order to
decrease the accuracy of the HCA II algorithm, and reduce the accuracy of
the numerical integration by setting the parameter quadorder to 2.

To use non-default settings in a new script sphere_hlib2.py we add one line to create an HMatrixSetup object

#create an HLib object
hms = nmag.HMatrixSetup(nmin=50, eps_aca=1e-5, quadorder=2)

This object is then passed to the Simulation object:

sim = nmag.Simulation(phi_BEM=hms)

In order to make the time measurement you can just run the nsim command
with a preceding ‘time’, i.e.

time nsim sphere_hlib2.py --clean

do the same with the sphere_hlib.py script, and compare the execution times. Alternatively,
search for the string like “Populating BEM took 25.094362 seconds” in the log file/output.
The execution time of the second script should be smaller (see also Using HLib Example 2: Thin Films).

For completeness: the Hdemag values computed with this script are:

x= -5e-09 : H_demag = [-333060.73884748813, -5.7471691393211453, -56.164777361260889]
x= -4e-09 : H_demag = [-333062.34355895646, -4.6973695734449556, -58.19523338342605]
x= -3e-09 : H_demag = [-333063.7357911733, -4.2543955018989577, -60.199068292632305]
x= -2e-09 : H_demag = [-333064.14913635491, -3.5107100192801424, -62.841949236542568]
x= -1e-09 : H_demag = [-333062.54691465426, -2.1473409122582736, -66.824386136704007]
x= 0.0 : H_demag = [-333060.94469295366, -0.78397180523640564, -70.806823036865438]
x= 1e-09 : H_demag = [-333059.14023403701, 0.15188988623380831, -75.030255790251871]
x= 2e-09 : H_demag = [-333055.17692864774, 2.2289146769013355, -77.213961296827563]
x= 3e-09 : H_demag = [-333051.63216875959, 4.3434799953307275, -80.273150211395659]
x= 4e-09 : H_demag = [-333048.08718075219, 6.4586908275326955, -83.334113807086638]
x= 5e-09 : H_demag = [-333046.47566667694, 8.6375699926922742, -85.648195356633963]

2.24.5. Using HLib Example 2: Thin Films

In this example we consider square thin films with a thickness of 10
nm (in z-direction), and a varying edge length (in x and y directions)
between 20 and 130 nm . The magnetisation within those films is
initially homogeneously aligned and points out-of-plane. We then use
Nmag’s relax routine in order to evolve the magnetisation field to an
energetically (meta-)stable state.

In order to estimate the efficiency benefits of hierarchical matrices,
the simulations are executed twice: (i) with and (ii) without
hierarchical matrices. Optimal damping is ensured by setting the
damping constant of the LLG equation to 1. To increase the efficiency
of the relaxation the tolerance of the time-stepper has been increased
to 1e-5 (see Example: Timestepper tolerances).

For our estimation of the efficiency we measure the time needed for
the setup of our simulation (basically the time for populating the
finite element and boundary element matrices), the time for relaxing
the system, and the memory consumption at the end of the simulation,
which should be roughly equal to the maximal value throughout the
simulation.

For each film size and either use of the full BEM or the approximation through hierarchical matrices, a separate nsim script file
(thinfilm20_full.py,
thinfilm40_full.py,
thinfilm60_full.py, ...,
thinfilm20_hlib.py, etc.)
has been written. It is important to start every simulation as a
single process (by calling nsim thinfilm20_full.py --clean etc.),
so that there are no overlaps in the memory access of different
simulations. From every script a routine run_simulation which is
imported from a local nsim module simtools.py, starts a simulation specified by
its arguments (name of the simulation, name of the mesh file, name of
hlib object in case hierarchical matrices are used, and the tolerance
for the time integrator) and returns the number of nodes of the mesh,
the simulation’s memory consumption and the setup- and relaxation
times. These values are then written to a file timings_hlib.dat or
timings_full.dat, respectively.

Beside extracting the information on the performance, it is also important to
check, whether simulations using the full boundary element matrix and a
hierarchical matrix approximation actually do the same, and that the simulated
behaviour is physically correct.

Looking at the spatially averaged magnetisation we find a very good agreement
between both simulation types (example given for the film with an edge length of
100nm):

[image: ../_images/relaxation_m.png]
The magnetisation field moves from its out-of-plane configuration into the plane
and relaxes into a high remanent state, which is aligned along the diagonal of the
square base. The plot below shows a 3d visualisation of the relaxed magnetisation
field (obtained with Mayavi2) for a thin film with an edge length of 130 nm.

[image: ../_images/thinfilm130.png]
We have run the simulations on a machine with an
AMD Athlon(tm) 64 X2 Dual Core Processor 3800+, using only one core. The
graphs below show the results of our efficiency test of hierarchical matrices.
It can be seen that the memory requirements are reduced considerably. While the
consumed memory increases (almost) linearly with the number of surface nodes N
for the calculation with hierarchical matrices, the increase is of a higher
order (O(N4/3)), when using the accurate boundary element matrix
B. The enhanced scaling behaviour allows for simulation of larger
ferromagnetic structures. The graph
on the memory consumption should enable users to estimate, whether they can
simulate a certain structure with Nmag+HLib and the available hardware.

[image: ../_images/performance.png]
Besides the savings in memory, hierarchical matrices also reduce the time needed
for the simulation setup considerably (see the bottom graph).

2.24.6. HLib and MPI

The `HLib`_ library that is available for academic use does not support
parallel execution. It is thus stored on the master node, and cannot
be distributed over several nodes. Simulations using the Hlib library
can use MPI (for all other calculations).

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.25. Example: Calculation of dispersion curves

|Nmag| can be used to study the propagation of spin waves and to calculate
dispersion curves. Here we consider a simulation script which shows how
to do that. In particular, we study a long cylindrical wire made of Permalloy.
We assume the magnetisation in the wire is relaxed along one axial direction
(i.e. there are no domain walls inside the wire). One side of the wire is “perturbed” at time t=0 by a pulsed magnetic field. The spin waves generated
on this side propagate towards the other. We want to study the propagation
of spin waves and obtain the dispersion relation, i.e. a relation between the
wave vector and the frequency of the spin-waves which propagate in the
considered media.
To calculate the dispersion relation we use the method developed
by V. Kruglyak, M. Dvornik and O. Dmytriiev

In order to carry out such a numerical experiment, we first need to calculate
the relaxed equilibrium magnetisation, i.e. the one which we perturb with
the application of a pulsed field. Consequently, the simulation is split into
two parts:

	In part I, the system is relaxed to obtain the initial magnetisation
configuration for zero applied field. Such a state is then saved into a file
to be used in part II;

	In part II, the magnetisation obtained in part I is loaded and used as
the initial magnetisation configuration. A pulsed external magnetic field
localised on one side of the wire is applied. The Landau-Lifshitz-Gilbert
equation is integrated in time to compute the dynamical reaction to the
applied stimulus. The configuration of the magnetisation is saved frequently
to file, so that it can be studied and processed later.

The two parts are two simulations of the same system under different
conditions.
If we then decide to write two separate files for the two parts we end up
duplicating the fragment of code which defines the materials and load
the mesh. For this reason we split the simulation in three files:

	"thesystem.py": defines the material which composes the nanowire and
loads the mesh;

	"relaxation.py": uses “thesystem.py” to setup the system and performs a
relaxation with zero applied field. It saves the final magnetisation
configuration to a file “m0.h5”;

	"dynamics.py": uses “thesystem.py” to setup the system, loads the initial
magnetisation configuration from the file “m0.h5” (produced by
“relaxation.py”). It then applies a localised pulse of the applied magnetic
field on one side of the wire and compute the dynamical response of the system
saving the result to files.

Consequently, in order to run the full simulation the user will have to type
two commands on the shell, one for each part of the simulation:

$ nsim relaxation.py
$ nsim dynamics.py

(there is no need to type nsim thesystem.py as this file is implicitly
“included” by the other two). In the next sections we will go through the
three files which make up the numerical experiment.

2.25.1. The system: thesystem.py

The system under investigation is a cylindrical nanopillar of radius r=3 nm
and length l=600 nm. The mesh file cylinder.nmesh.h5 is obtained (using
`Netgen`_). (The figure shows a cylinder that is 100nm long.)

[image: magnonics-1]

The geometry file given to `Netgen`_
cylinder.geo
is shown below:

 algebraic3d
 solid nanopillar = cylinder (-300.0, 0, 0; 300.0, 0, 0; 3.0)
 and plane (-300.0, 0, 0; -1, 0, 0)
 and plane (300.0, 0, 0; 1, 0, 0)
 -maxh=1.0;
 tlo nanopillar;

The cylinder is made of Permalloy and as specified in the file
thesystem.py shown below:

In this file we define the material parameters and geometry of the system
so that we can use it in two simulations: first during the relaxation,
then during the dynamics

from nmag.common import *

nm = SI(1e-9, 'm') # define nm as "nanometre"
ps = SI(1e-12, 's') # define ps as "picosecond"

m0_filename = "m0.h5" # the file containing the equilibrium magnetisation

A function which sets up the simulation with given name and damping
def simulate_nanowire(name=None, damping=0.5):
 permalloy = MagMaterial('Py',
 Ms=SI(0.86e6, 'A/m'),
 exchange_coupling=SI(13e-12, 'J/m'),
 llg_damping=damping)

 s = Simulation(name)
 s.load_mesh("cylinder.nmesh.h5", [('nanopillar', permalloy)],
 unit_length=nm)
 return s

The file defines a few entities which are used in both the two parts of the
simulations: nm is just an abbreviation for nanometer and similarly
ps is an abbreviation for picosecond. m0_filename is the name of the
file where the relaxed magnetisation will be saved (in part I) and loaded
(in part II). Finally, the function simulate_nanowire deals with the
portion of the setup which is common to both part I and part II.
In particular, it defines a new material permalloy, creates a new
simulation object s, load the mesh and associates to it the material
permalloy. Such setup procedure is very similar to what has been
encountered so far in the manual, the only element of novelty is that here
we do it inside a function and return the created simulation object
as a result of the function. The file defined here is not supposed
to be run by itself, but rather to be used in part I and II.

2.25.2. Part I: relaxation.py

The source for the file
relaxation.py
is shown below:

This script is used to compute the equilibrium configuration for the
magnetisation, which is then used in the second part of the simulation,
where the dynamics is actually studied.

from thesystem import simulate_nanowire, m0_filename, ps
from nmag.common import *

s = simulate_nanowire(name='relaxation', damping=0.5) # NOTE the high damping!
s.set_m([1, 0, 0])
s.relax(save=[('fields', at('time', 0*ps) | at('convergence'))])
s.save_restart_file(m0_filename)

The first two lines are used to import entities defined elsewhere.
In particular, the first line in:

from thesystem import simulate_nanowire, m0_filename, ps
from nmag.common import *

tells to Python to load the file thesystem.py and “extract” from it the
entities simulate_nanowire, m0_filename, ps. The second line
does a similar thing and extracts all the quantities defined in the Nmag
module nmag.common. This module defines some entities which are commonly
used in simulations (such as every, at, SI, etc).
The simulation is then set up using:

s = simulate_nanowire(name='relaxation', damping=0.5) # NOTE the high damping!

This line invokes the function simulate_nanowire, which does load the mesh
and associate the material to it. The function returns the simulation object
which is stored inside the variable s and is used in the following lines:

s.set_m([1, 0, 0])
s.relax(save=[('fields', at('time', 0*ps) | at('convergence'))])
s.save_restart_file(m0_filename)

Here we set the magnetisation along the axis of the nanopillar,
we then relax the system to find the equilibrium magnetisation.
We finally save such a configuration in the file m0_filename, i.e. with
the name specified in thesystem.py.

2.25.3. Part II: dynamics.py

The source for the file dynamics.py
is shown below:

from thesystem import simulate_nanowire, m0_filename, ps, nm
from nmag.common import *

Details about the pulse
pulse_boundary = -300.0e-9 + 0.5e-9 # float in nm
pulse_direction = [0, 1, 0]
pulse_amplitude = SI(1e5, 'A/m')
pulse_duration = 1*ps

Function which sets the magnetisation to zero
def switch_off_pulse(sim):
 sim.set_H_ext([0.0, 0.0, 0.0], unit=pulse_amplitude)

Function which sets the pulse as a function of time/space
def switch_on_pulse(sim):
 def H_ext(r):
 if r[0] < pulse_boundary:
 return pulse_direction
 else:
 return [0.0, 0.0, 0.0]

 sim.set_H_ext(H_ext, unit=pulse_amplitude)

Here we run the simulation: do=[....] is used to set the pulse
save=[...] is used to save the data.
s = simulate_nanowire('dynamics', 0.05)
s.load_m_from_h5file(m0_filename)
s.relax(save=[('fields', every('time', 0.5*ps))],
 do=[(switch_on_pulse, at('time', 0*ps)),
 (switch_off_pulse, at('time', pulse_duration)),
 ('exit', at('time', 200*ps))])

The simulation starts again importing a few entities from the file
thesystem.py. In particular, the function simulate_nanowire is used
to setup the system similarly to what was done for the relaxation.
The next few lines define some variables which are used to define the
geometry and duration of the magnetic field pulse:

Details about the pulse
pulse_boundary = -300.0e-9 + 0.5e-9 # float in nm
pulse_direction = [0, 1, 0]
pulse_amplitude = SI(1e5, 'A/m')
pulse_duration = 1*ps

In this example the pulse is obtained by switching on the applied field
(from (0, 0, 0) to (0, pulse_amplitude, 0)) in the region of the wire
where x < pulse_boundary, which corresponds in this case to a layer
of 0.5 nm thickness on one side of the cylinder.
The pulse is switched on at t=0 and switched off at pulse_duration.
We now examine the code and explain how all this is coded in the script.
We start explaining the last few lines:

Here we run the simulation: do=[....] is used to set the pulse
save=[...] is used to save the data.
s = simulate_nanowire('dynamics', 0.05)
s.load_m_from_h5file(m0_filename)
s.relax(save=[('fields', every('time', 0.5*ps))],
 do=[(set_pulse, at('time', 0*ps)),
 (set_to_zero, at('time', pulse_duration)),
 ('exit', at('time', 200*ps))])

Here we use the simulate_nanowire function which we defined in the file
thesystem.py to setup the system and the materials.
We then set the initial magnetisation configuration from the file saved
in part I and carry out the time integration by calling the relax method
of the simulation object s. The pulse is switched on and switched off
by the instruction passed in the do=[...] argument. In particular,
the argument do accepts a list of pairs
(things to be done, at a given time). The code:

do=[(switch_on_pulse, at('time', 0*ps)),
 (switch_off_pulse, at('time', pulse_duration)),
 ('exit', at('time', 200*ps))]

specifies that:

	the function switch_on_pulse should be executed at time t=0 ps;

	the function switch_off_pulse should be executed at time
t= pulse_duration;

	the simulation should terminate at time t=200 ps.

At the same time the argument save=[('fields', every('time', 0.5*ps))]
of the relax method saves the field every 0.5 ps.

Let’s now see how the pulse is actually switched on and off.
To switch off the pulse we provide the function:

Function which sets the magnetisation to zero
def switch_off_pulse(sim):
 sim.set_H_ext([0.0, 0.0, 0.0], unit=pulse_amplitude)

The function gets the simulation object, sim, as an argument
and uses it together with the method set_H_ext to set the applied
magnetic field to zero everywhere.
The function to set up the simulation is a little bit more complicated:

Function which sets the pulse as a function of time/space
def switch_on_pulse(sim):
 def H_ext(r):
 if r[0] < pulse_boundary:
 return pulse_direction
 else:
 return [0.0, 0.0, 0.0]

 sim.set_H_ext(H_ext, unit=pulse_amplitude)

Indeed, being the pulse localised (and hence non-uniform) in space,
we need to define a function to be given to set_H_ext.
The function checks whether the x component in the given point is lower
than pulse_amplitude and sets the applied field to a value differt
from zero only if that is really the case.

2.25.4. Postprocessing the data

Once the simulations are finished, the data (i.e. the values of the
magnetisation saved every 0.5 ps) can be extracted from the file
dynamics_dat.h5 and postprocessed.
We use the nmagprobe command for this. nmagprobe can perform
several postprocessing tasks (detailed documentation can be obtained
by typing nmagprobe --help).
In this context it is used to probe the magnetisation along the axis
of the cylinder at regular intervals of time.
The values extracted are then Fourier transformed.
The command we use is the following:

nmagprobe --verbose dynamics_dat.h5 --field=m_Py \
 --time=0,100e-12,101 --space=-300,300,201/0/0 --ref-time=0.0 \
 --scalar-mode=component,1 --out=real-space.dat \
 --ft-axes=0,1 --ft-out=norm --ft-out=rec-space.dat

Here we extract data for the magnetisation (option --field=m_Py)
from the file dynamics_dat.h5.

	We probe the field over a cubic lattice in space and time.
The lattice is four dimensional and consists of the points
(t, x, y, z) with t=0, 1 ps, 2 ps, ..., 100 ps (101 values),
x=-300 nm, -297 nm, -294 nm, ..., 300 nm (201 values)
and y=z=0.
The lattice is fully determined by the options --time and --space.
In particular, the option --time=0,100e-12,101 states that the lattice
consists of 101 equispaced values going from 0 to 100e-12 s.
The option --space accepts a similar expressions for each spatial
coordinate separated by /;

	--ref-time=0.0 tells to nmagprobe that after extracting
the values for the field, m(t, x, y, z), it should compute the difference
with respect to the given time,
i.e. dm(t, x, y, z) = m(t, x, y, z) - m(0, x, y, z).
We add this option to nmagprobe because we are interested in the variation
of the magnetisation with respect to the equilibrium configuration (t=0)
rather than on its “absolute” value;

	--scalar-mode=component,1 induces nmagprobe to extract the y
component of dm and to use it as a scalar when writing the output
and when doing the fourier transform (to extract the x component one
should use --scalar-mode=component,0); We could also write
--scalar-mode=component,y and --scalar-mode=component,x.

	--out=real-space.dat induces nmagprobe to save to file the data
selected by the options discussed so far. In particular, the file
real-space.dat will be filled with the values of the y-component
of dm(t, x, y, z) along the selected lattice. That will be a text file
which can be inspected with a text editor and used within plotting programs
such as `Gnuplot`_;

	--ft-axes=0,1 specifies that the selected data should be Fourier
transformed along the axis 0 (time) and 1 (x-space). This can also
be written as --ft-axes=t,x.

	--ft-out=norm induces nmagprobe to compute the norm of the complex
numbers coming from the Fourier-transform. These are the values which
are finally saved to file;

	--ft-out=rec-space.dat specifies the output file for the
Fourier-transformed data.

The command creates two files: real-space.dat, containing the y component
of the magnetisation variation as a function of time and space,
and rec-space.dat, containing the Fourier transform of such a quantity.

To plot the data in the two files we use the `Gnuplot`_ script
plot.gnp:

set term png
set pm3d map

set out "real-space.png"
set title "y component of magnetisation variation"
set xlabel "position in axis (nm)"
set ylabel "time (ps)"
splot [] [0:] [-0.001:0.001] 'real-space.dat' u ($2):($1/1e-12):5 t ""

set out "rec-space.png"
set title "Fourier transform"
set xlabel "k (1/nm)"
set ylabel "omega (GHz)"
splot [] [0:] [0:1.7e-8] 'rec-space.dat' u (-$2):($1/(2*pi*1e9)):5 t ""

Here is the result after running the script with Gnuplot.

[image: magnonics-1]

[image: magnonics-2]

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.26. Example: Timestepper tolerances

The tolerance settings of a simulation can greatly affect the
performance, the accuracy and the usefulness of a simulation. Section
Solvers and tolerance settings provides an overview. In this
example, we demonstrate

	how the time integrator’s tolerances can be set and

	how these tolerances affect the simulation results and performance.

The time integrator we use is the PVODE solver from the `SUNDIALS`_
package. It is optimised to deal with stiff systems of ordinary
differential equations and is therefore very suited for micromagnetic
simulations. It can also execute in parallel (i.e. across several CPUs
at the same time using MPI). The computational challenge of the time
integration lies in the different time scales associated with the
(fast) exchange field and the (slower) demagnetisation field.

Sundials provides two parameters rtol and atol (see sundials
documentation [https://computation.llnl.gov/casc/sundials/documentation/cv_guide.pdf])
to control the required accuracy of the calculations. Sundials uses
these parameters to determine the number of iterations required to
simulate a given amount of real time (for example one pico
second). Equivalently, these parameters determine the amount of real
time that can be simulated per iteration.

It is common that the amount of time simulated per iteration varies
throughout a simulation as different time step sizes are required to
resolve the physics to the same accuracy level. (The Data files (.ndt) data file
contains one column last_step_dt which provides the size of the
time step. Use ncol to extract this data conveniently.)

The sundials tolerance parameters rtol and atol can be set in
|nmag| using the ts_rel_tol and ts_abs_tol arguments in the
set_params function. (The letters ts in ts_rel_tol and
ts_abs_tol stand for Time Stepper).

The integration of the Landau Lifshitz and Gilbert equation is carried
out on the normalised magnetisation, and the corresponding field
(see Fields and Subfields in Nmag) is called m (the magnetisation with the saturation magnetisation magnitude is called capital M in nmag). Because this
field is normalised, we set rtol and atol to the same value in
this example, and refer to the value just as tol.

We use the program bar_tol.py that:

	re-uses the bar studied in Example 2: Computing the time development of a system but

	carries out the time integration for a number of different tolerance values.

import nmag
from nmag import SI

import time #python standard modules, used to measure run time

def run_sim(tol):
 """Function that is called repeatedly with different tolerance values.
 Each function call is carrying out one simulation.
 """
 mat_Py = nmag.MagMaterial(name="Py",
 Ms=SI(0.86e6,"A/m"),
 exchange_coupling=SI(13.0e-12, "J/m"),
 llg_damping=0.5)

 #compose name of simulation to inlude value of tolerance
 sim = nmag.Simulation("bar_%.6f" % tol)

 sim.load_mesh("bar30_30_100.nmesh.h5",
 [("Py", mat_Py)],
 unit_length=SI(1e-9,"m"))

 sim.set_m([1,0,1])

 #set tolerance (has to be called after set_m())
 sim.set_params(ts_abs_tol=tol, ts_rel_tol=tol)

 dt = SI(2.5e-12, "s")

 timing = 0 #initialise variable to measure execution time

 for i in range(0, 121):
 timing -= time.time() #start measuring time
 sim.advance_time(dt*i) #compute time development for 300ps
 timing += time.time() #stop measuring time
 #we exclude time required to save data

 sim.save_data() #save averages every 2.5 ps

 #at end of simulation, write performance data into summary file
 f=open('resultsummary.txt','a') #open file to append
 f.write('%g %d %g\n' % (tol,sim.clock['step'],timing))
 f.close()

#main program
tols = [1e-1,1e-2,1e-3,1e-4,1e-5,1e-6]

for tol in tols:
 run_sim(tol)

From a conceptual point of view, we see something new here: the section of the code that starts with:

def run_sim(tol):

defines a function with name run_sim which will carry out a
complete simulation every time it is called. It takes one argument:
the parameter tol. The simulation name (which is re-used in the
name of the Data files (.ndt) data file) contains the value of tol. For
example, if the tol=0.1, then the name of the simulation is
bar_0.100000 and the name of the ndt data file is
bar_0.100000_dat.ndt. We can thus call this function repeatedly
for different values of tol, and each time a complete simulation
will be run and new data files created. [1]

The main loop of the script:

#main program
tols = [1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1.0]

for tol in tols:
 run_sim(tol)

simply iterates over values 0.1, 0.01, 0.001, 0.0001, 0.00001 and
0.000001 and calls the function run_sim with a different
tolerance value in every iteration of the for-loop.

Once the program has finished, we have data files
bar_0.000001_dat.ndt, bar_0.000010_dat.ndt, ... and
bar_0.100000_dat.ndt that can be analysed and plotted in the usual
way.

We show a plot of the x, y and z components of the magnetisation
against time (as in Example 2: Computing the time development of a system) for each of the tolerance
values. The run with tol=1e-6 is the most accurate, and the
corresponding black line has been tagged with little + characters.

[image: ../_images/plot1.png]
We can see that curves seem to coincide (at this scale) apart from the
red tol=1e-1 curve which deviates somewhat.
We zoom in to region between 1.2e-10 seconds and 2e-10 seconds and
focus on the lowers curves in the main plot:

[image: ../_images/plot2.png]
The better resolution reveals that there is a clear deviation of the
various curves: the red (0.1), indigo (0.01) and yellow (1e-3) curves
approach the black (1e-6) curve in this order. The blue (1e-4) and
green (1e-5) curves appear to coincide with the black reference curve.

Another zoom at the z-component of the magnetisation towards the end
of the simulated time interval (time>1.8e-10 seconds) shows that the
less accurate curves (red, and then indigo and yellow) show a large
amount of jitter (although following the reference curve on
average).

[image: ../_images/plot3.png]
We conclude that we should use a tolerance of at most 1e-3 for this
simulation; better 1e-4 or smaller.

In simulation work, we are of course interested to get the most
accurate simulation results. However, in reality this is conflicting
with the increased run time that is associated with more accurate
simulations. In this example, we have written some performance data
into resultssummary.txt. Reformatted,
postprocessed and the rows re-ordered, this is the data complete with
table headings:

========== ========== ============== =====================
 tol steps CPU time (s) CPU time per step (s)
========== ========== ============== =====================
 0.000001 740 120.81 0.163
 0.000010 356 62.37 0.175
 0.000100 182 46.10 0.253
 0.001000 119 66.36 0.558
 0.010000 114 92.08 0.808
 0.100000 88 94.69 1.076
========== ========== ============== =====================

The accuracy of the simulation results decreases from the top of the
table downwards. We know from the graphs above that we should use a
tolerance setting of 1e-4 or smaller to obtain fairly accurate results
(assuming that the 1e-6 curve is used as a reference).

The number of iterations required increases from the tolerance 1e-4 to
tolerance 1e-6 by a factor of 4 while the total CPU time increases by
a factor of 2.6.

Looking at the greater tolerances 1e-3 and 0.01, we see that while the
number of iterations required decreases, the CPU time is
increasing. This is the first indication that at this tolerance level
the system becomes difficult to treat efficiently by sundials (it
basically appears to be noisy and stochastic equations are hard to
integrate).

In summary,

	to minimise the simulation time, we need to choose a tolerance value
as large as “possible”.

	The definition of “possible” will depend on the context. A good way
of obtaining a suitable tolerance value is to run the same simulation
repeatedly with decreasing tolerance values. Once the resulting curves
converge (as a function of decreasing tolerance settings), a good tolerance level
has been found. (This would be 1e-4 for the example shown here.)

	Choosing the tolerance values to be too large, can be counter
productive (and take much more CPU time than the lower accuracy
level).

	The default value for the sundials tolerances is shown in the
documentation of set_params. A simulation can often be accelerated
significantly by increasing this value.

	A change of the tolerances has to be considered together with the
convergence criterion for hysterises loop calculations (see next
section: Hysteris loop calculation not converging? A word of warning ...)

2.26.1. Hysteris loop calculation not converging? A word of warning ...

The hysteresis and the relax command need to have a criterion how to
decide when the simulation has reached a (meta)stable state and when
the relaxation (at a given applied field) should be considered to have
been reached. A common approach (which is used by OOMMF and nmag, for
example) is to monitor the change of the (normalised) magnetisation
with respect to time (i.e. dm/dt). If the absolute value of this drops
below a given threshold, then one considers the system as converged
(the relax command will return at this point, while the hysteresis
command will move to the next field). This threshold can be changed
from its default value with the set_params simulation method (the
attribute is stopping_dm_dt).

The choice of the tolerances (ts_rel_tol and ts_abs_tol) must
respect the chosen stopping_dm_dt value (or conversely
the stopping_dm_dt needs to be adapted to work with
the chosen tolerances):
large values for the tolerances correspond to lower accuracy
and to larger random fluctuations of dm/dt,
which consequently may never become lower than stopping_dm_dt.
In such a case the simulation never returns from the relax command,
because the convergence criterion is never satisfied.

In all the examples we have studied, we have found that the default
parameters work fine. However, if you find that a simulation never
returns from the hysteresis or relax command, it is worth reducing
the tolerances for the time stepper (on increasing stopping_dm_dt)
to see whether this resolves the problem).

	[1]	We could, in fact, avoid re-creating all the operator matrices
and the BEM, and just repeat the simulation with varying values of the
tol parameter. However, this would mean that the data is written
into the same file (so is slightly less convenient here). It would
also be a less pedagogical example in this guided tour.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.27. Example: Parallel execution (MPI)

|Nmag|‘s numerical core (which is part of the |nsim| multi-physics
library) has been designed to carry out numerical computation on
several CPUs simultaneously. The protocol that we are using for this
is the wide spread Message Passing Interface (MPI). There are a number
of MPI implementations; the best known ones are probably MPICH1,
MPICH2 and LAM-MPI. Currently, we support MPICH1 [http://www-unix.mcs.anl.gov/mpi/mpich1/] and MPICH2 [http://www.mcs.anl.gov/research/projects/mpich2].

Which mpi version to use? Whether you want to use mpich1 or mpich2
will depend on your installation: currently, the installation from
source provides mpich2 (which is also used in the virtual machines)
whereas the Debian package relies on mpich1 (no Debian package is
provided after release 0.1-6163).

2.27.1. Using mpich2

Before
the actual simulation is started, a multi-purpose daemon must be
started when using MPICH2.

The ``.mpd.conf`` file

MPICH2 will look for a configuration file with name .mpd.conf in
the user’s home directory. If this is missing, an attempt to start
the multi-purpose daemon, will result in an error message like
this:

$> mpd
configuration file /Users/fangohr/.mpd.conf not found
A file named .mpd.conf file must be present in the user's home
directory (/etc/mpd.conf if root) with read and write access
only for the user, and must contain at least a line with:
MPD_SECRETWORD=<secretword>
One way to safely create this file is to do the following:
 cd $HOME
 touch .mpd.conf
 chmod 600 .mpd.conf
and then use an editor to insert a line like
 MPD_SECRETWORD=mr45-j9z
into the file. (Of course use some other secret word than mr45-j9z.)

If you don’t have this file in your home directory, just follow the
instructions above to create it with some secret word of your choice
(Note that the above example is from a Mac OS X system: on Linux the
home directory is usually under /home/USERNAME rather than
/Users/USERNAME as shown here.)

Let’s assume we have a multi-core machine with more than one
CPU. This makes the mpi setup slightly easier, and is also likely to
be more efficient than running a job across the network between
difference machines.

First, we need to start the multi-purpose daemon:

$> mpd &

It will look for the file ~/.mpd.conf as described above. If found, it will start silently. Otherwise it will complain.

2.27.1.1. Testing that nsim executes in parallel

First, let’s make sure that nsim is in the search path. The command which nsim will return the location of the executable if it can be found in the search path. For example:

$> which nsim
/home/fangohr/new/nmag-0.1/bin/nsim

To execute nsim using two processes, we can use the command:

$> mpiexec -n 2 nsim

There are two useful commands to check whether nsim is aware of the intended MPI setup. The fist one is ocaml.mpi_status() which provides the total number of processes in the MPI set-up:

$> mpiexec -n 2 nsim
>>> ocaml.mpi_status()
MPI-status: There are 2 nodes (this is the master, rank=0)
>>>

The other command is ocaml.mpi_hello() and prints a short ‘hello’ from all processes:

>>> ocaml.mpi_hello()
>>> [Node 0/2] Hello from beta.kk.soton.ac.uk
[Node 1/2] Hello from beta.kk.soton.ac.uk

For comparison, let’s look at the output of these commands if we start nsim without MPI, in which case only one MPI node is reported:

$> nsim
>>> ocaml.mpi_status()
MPI-status: There are 1 nodes (this is the master, rank=0)
>>> ocaml.mpi_hello()
[Node 0/1] Hello from beta.kk.soton.ac.uk

Assuming this all works, we can now start the actual simulation. To
use two CPUs on the local machine to run the bar30_30_100.py
program, we can use:

$> mpiexec -n 2 nsim bar30_30_100.py

To run the program again, using 4 CPUs on the local machine:

$> mpiexec -n 4 nsim bar30_30_100.py

Note that mpich2 (and mpich1) will spawn more processes than there are
CPUs if necessary. I.e. if you are working on some Intel Dual Core
processor (with 2 CPUs and one core each) but request to run your
program with 4 (via the -n 4 switch given to mpiexec), than
you will have 4 processes running on the 2 CPUs.

If you want to stop the mpd daemon, you can use:

$> mpdallexit

For diagnostic purposes, the mpdtrace command can be use to track
whether a multipurpose daemon is running (and which machines are part
of the mpi-ring).

Advanced usage of mpich2

To run a job across different machines, one needs to start the
multi-purpose daemons on the other machines with the mpdboot
command. This will search for a file (in the current directory) with
name mpd.hosts which should contain a list of hosts to participate
(very similar to the machinefile in MPICH1).

To trace which process is sending what messages to the standard out,
one can add the -l switch to the mpiexec command: then each
line of standard output will be preceded by the rank of the process
who has issued the message.

Please refer to the official MPICH2 [http://www.mcs.anl.gov/research/projects/mpich2] documentation for further details.

2.27.2. Using mpich1

Note: Most users will use MPICH2 (if they have compiled Nmag from the tar-ball): see Using mpich2

Suppose we would like to run Example 2: Computing the time development of a system of the manual with 2
processors using MPICH1. We need to know the full path to the nsim executable. In
a bash environment (this is pretty much the standard on Linux and
Mac OS X nowadays), you can find the path using the which
command. On a system where nsim was installed from the Debian package:

$> which nsim
/usr/bin/nsim

Let’s assume we have a multi-core machine with more than one
CPU. This makes the mpi setup slightly easier, and is also likely to
be more efficient than running a job across the network between
difference machines. In that case, we can run the example on 2 CPUs using:

$> mpirun -np 2 /usr/bin/nsim bar30_30_100.py

where -np is the command line argument for the Number of Processors.

To check that the code is running on more than one CPU, one of the
first few log messages will display (in addition to the runid of the
simulation) the number of CPUs used:

$> mpirun -np 2 `which nsim` bar30_30_100.py

 nmag:2008-05-20 12:50:01,177 setup.py 269 INFO Runid (=name simulation) is 'bar30_30_100', using 2 CPUs

To use 4 processors (if we have a quad core machine available), we would use:

$> mpirun -np 4 /usr/bin/nsim bar30_30_100.py

Assuming that the nsim executable is in the path, and that we are
using a bash-shell, we could shortcut the step of finding the nsim
executable by writing:

$> mpirun -np 4 `which nsim` bar30_30_100.py

To run the job across the network on different machines
simultaneously, we need to create a file with the names of the hosts
that should be used for the parallel execution of the program. If you
intend to use nmag on a cluster, your cluster administrator should
explain where to find this machine file.

To distribute a job across machine1.mydomain,
machine2.mydomain, and machine3.mydomain we need to create the
file machines.txt with content:

machine1.mydomain
machine2.mydomain
machine3.mydomain

We then need to pass the name of this file to the mpirun command
to run a (mpi-enabled) executable with mpich:

mpirun -machinefile machines.txt -np 3 /usr/bin/nsim bar30_30_100.py

For further details, please refer to the MPICH1 [http://www-unix.mcs.anl.gov/mpi/mpich1/] documentation.

2.27.3. Visualising the partition of the mesh

We use Metis to partition the mesh. Partitioning means to allocate
certain mesh nodes to certain CPUs. Generally, it is good if nodes
that are spatially close to each other are assigned to the same CPU.

Here we demonstrate how the chosen partition can be visualised. As an
example, we use the Example: demag field in uniformly magnetised
sphere. We are Using mpich2:

$> mpd &
$> mpiexec -l -n 3 nsim sphere1.py

The program starts, and prints the chose partition to stdout:

 nfem.ocaml:2008-05-28 15:11:07,757 INFO Calling ParMETIS to partition the me
sh among 3 processors
 nfem.ocaml:2008-05-28 15:11:07,765 INFO Processor 0: 177 nodes
 nfem.ocaml:2008-05-28 15:11:07,765 INFO Processor 1: 185 nodes
 nfem.ocaml:2008-05-28 15:11:07,766 INFO Processor 2: 178 nodes

If you can’t find the information on the screen (=stdout), then have a
look in sphere1_log.log which contains a copy of the log messages
that have been printed to stdout.

If we save any fields spatially resolved (as with the
sim.save_data(fields='all') command), then nmag will create a file
with name (in this case) sphere1_dat.h5. In addition to the field
data that is saved, it also stores the finite element mesh in the
order that was used when the file was created. In this example, this
is the mesh ordered according to the output from the ParMETIS
package. The first 177 nodes of the mesh in this order are assigned to
CPU0, the next 185 are assigned to CPU1, and the next 178 are assigned to
CPU2.

We can visualise this partition using the nmeshpp command (which we
apply here to the mesh that is saved in the sphere1_dat.h5 file):

$> nmeshpp --partitioning=[177,185,178] sphere1_dat.h5 partitioning.vtk

The new file partitioning.vtk contains only one field on the mesh, and this has assigned to each mesh node the id of the associated CPU. We can visualise this, for example, using:

$> mayavi -d partitioning.vtk -m SurfaceMap

[image: ../_images/sphere3partitions.png]
The figure shows that the sphere has been divided into three areas
which carry values 0, 1 and 2 (corresponding to the MPI CPU rank which
goes from 0 to 2 for 3 CPUs). Actually, in this plot we can only see
the surface nodes (but the volume nodes have been partitioned
accordingly).

The process described here is a bit cumbersome to visualise the
partition. This could in principle be streamlined (so that we save the
partition data into the _dat.h5 data file and can generate the
visualisation without further manual intervention). However, we expect
that this is not a show stopper and will dedicate our time to more
pressing issues. (User feedback and suggestions for improvements are
of course always welcome.)

2.27.4. Performance

Here is some data we have obtained on an IBM x440 system (with eight
1.9Ghz Intel Xeon processors). We use a test simulation (located in
tests/devtests/nmag/hyst/hyst.par) which computes a hysteresis
loop for a fairly small system (4114 mesh nodes, 1522 surface nodes,
BEM size 18MB). We use overdamped time integration to determine the
meta-stable states.

Both the setup and the time required to write data will not become
significantly faster when run on more than one CPU. We provide:

total time: this includes setup time, time for the main simulation loop and time for writing data (measured in seconds)

total speedup: The speed up for the total execution time (i.e. ratio of execution time on one CPU to execution time on n CPUs).

sim time: this is the time spend in the main simulation loop (and this is where expect a speed up)

sim speedup: the speedup of the main simulation loop

	CPUs
	total time
	total speedup
	sim time
	sim speedup

	1
	4165
	1.00
	3939
	1.00

	2
	2249
	1.85
	2042
	1.93

	3
	1867
	2.23
	1659
	2.37

	4
	1605
	2.60
	1393
	2.83

The numbers shown here have been obtained using mpich2 (and using the
ssm device instead of the default sock device: this is
available on Linux and resulted in a 5% reduction of execution time).

Generally, the (network) communication that is required between the
nodes will slow down the communication. The smaller the system, the
more communication has to happen between the nodes (relative to the
amount of time spent on actual calculation). Thus, one expects a
better speed up for larger systems. The performance of the network is
also crucial: generally, we expect the best speed up on very fast
networks and shared memory systems (i.e. multi-CPU / multi-core
architectures). We further expect the speed-up to become worse (in
comparison to the ideal linear speed-up) with an increasing number of
processes.

2.28. Restarting MPI runs

There is one situation that should be avoided when exploiting parallel
computation. Usually, a simulation (involving for example a hysteresis
loop), can be continued using the --restart switch. This is also
true for MPI runs.

However, the number of CPUs used must not change between the initial
and any subsequent runs. (The reason for this is that the _dat.h5
file needs to store the mesh as it has been reordered for n CPUs. If
we continue the run with another number of CPUs, the mesh data will
not be correct anymore which will lead to errors when extracting the
data from the _dat.h5 file.)

Note also that there is currently no warning issued (in Nmag 0.1) if a user ventures
into such a simulation.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

 	2. Guided Tour

2.29. More than one magnetic material, exchange coupled

To be written.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

3. Background

In this section, we list some background information on the simulation
package, some explanation of the philosophy behind it (which may
explain some of the user interface choices that have been made) and
explanation of some terms that are relevant.

3.1. Architecture overview

[image: _images/nmag-architecture500.png]
The |Nmag| environment that is described in this manual is shown as the blue box labelled Nmag Simulation Script. This is importing the nmag library – which is a Python library. This in turn, is built on the Nsim library Python module. The |Nsim| Python module uses compiled code which is written in Objective Caml. At this level the execution can be parallel and this is also used to link together existing libraries (yellow boxes).

3.2. The |Nsim| library

|Nmag| is the high-level user interface that provides micromagnetic
capabilities to a general purpose finite element multi-physics field
theory library called |Nsim|. Therefore, many of the concepts used by
|Nmag| are inherited from |Nsim|.

This manual documents the high-level |Nmag| userinterface, it does not
document |Nsim|. Some of the internal details of |Nsim| are explained
in http://arxiv.org/abs/arXiv:0907.1587.

3.3. Fields and subfields

3.3.1. Field

The Field is the central entity within the The |Nsim| library. It represents physical
fields such as:

	magnetisation (usually a 3d vector field),

	the magnetic exchange field (usually a 3d vector field), or

	magnetic exchange energy (a scalar field).

A field may contain degrees of freedom of different type, which belong
to different parts of a simulated object. For example, the
magnetisation field may contain the effective magnetisation (density)
for more than one type of magnetic atoms, which may make up different
parts of the object studied. In order to deal with this, we introduce
the concept of Subfields: A |Nmag|/|Nsim| field can be regarded as a
collection of subfields. Most often, there only is one subfield in a
field, but when it makes sense to group together multiple conceptually
independent fields (such as the effective magnetisation of the iron
atoms in a multilayer structure and that of some other magnetic metal
also present in the structure), a field may contain more than one
subfield: In particular, the magnetisation field M may contain
subfields M_Fe and M_Co.

The question what subfields to group together is partly a question of
design. For |Nmag|, the relevant choices have been made by the |Nmag|
developers, so the user should not have to worry about this.

3.3.2. Subfield

Each field contains one or more Subfields. For example, a
simulation with two different types of magnetic material (for example
Fe and Dy), has a field m for the normalised magnetisation and
this would contain two subfields m_Fe and m_Dy.

(It is partly a question of philosophy whether different material
magnetisations are treated as subfields in one field, or whether they
are treated as two fields. For now, we have chosen to collect all the
material magnetisations as different subfields in one field.)

Often, a field contains only one subfield and this may carry the same
name as the field.

3.4. Fields and Subfields in Nmag

3.4.1. Example: one magnetic material

Assuming we have a simulation of one material with name PermAlloy (Py),
we would have the following Fields and Subfields:

	Field
	Subfield
	Comment

	m
	m_Py
	normalised magnetisation

	M
	M_Py
	magnetisation

	H_total
	H_total_Py
	total effective field

	H_ext
	H_ext
	external (applied) field (only one)

	E_ext
	E_ext_Py
	energy density of Py due to external field

	H_anis
	H_anis_Py
	crystal anisotropy field

	E_anis
	E_anis_Py
	crystal anisotropy energy density

	H_exch
	H_exch_Py
	exchange field

	E_exch
	E_exch_Py
	exchange energy

	H_demag
	H_demag
	demagnetisation field (only one)

	E_demag
	E_demag_Py
	demagnetisation field energy density for Py

	phi
	phi
	scalar potential for H_demag

	rho
	rho
	magnetic charge density (div M)

	H_total
	H_total_Py
	total effective field

It is worth noting that the names of the fields are fixed whereas the
subfield names are (often) material dependent and given by

	the name of the field and the material name (joined through ‘_‘)
if there is one (material-specific) subfield for every magnetisation or

	the name of the field if there is only one subfield (such as the
demagnetisation field or the applied external field)

This may seem a little bit confusing at first, but is easy to
understand once one accepts the general rule that the
material-dependent quantities - and only those - contain a
material-related suffix. All atomic species experience the
demagnetisation field in the same way, so this has to be H_demag
(i.e. non-material-specific). On the other hand, anisotropy depends on
the atomic species, so this is H_anis_Py, and therefore, the total
effective field also has to be material-specific: H_total_Py. (All
this becomes particularly relevant in systems where two types of
magnetic atoms are embedded in the same crystal lattice.)

3.4.2. Example: two magnetic materials

This table from the Example: two different magnetic materials shows
the fields and subfields when more than one material is involved:

	Field
	Subfield(s)
	Comment

	m
	m_Py, m_Co
	normalised magnetisation

	M
	M_Py, M_Co
	magnetisation

	H_total
	H_total_Py, H_total_Co
	total effective field

	H_ext
	H_ext
	external (applied) field (only one)

	E_ext
	E_ext_Py, E_ext_Co
	energy density of Py due to external field

	H_anis
	H_anis_Py, H_anis_Co
	crystal anisotropy field

	E_anis
	E_anis_Py, E_anis_Co
	crystal anisotropy energy density

	H_exch
	H_exch_Py, H_exch_Co
	exchange field

	E_exch
	E_exch_Py, E_exch_Co
	exchange energy

	H_demag
	H_demag
	demagnetisation field (only one)

	E_demag
	E_demag_Py, E_demag_Co
	demagnetisation field energy density

	phi
	phi
	scalar potential for H_demag

	rho
	rho
	magnetic charge density (div M)

	H_total
	H_total_Py, H_total_Co
	total effective field

3.4.3. Obtaining and setting subfield data

Data contained in subfields can be written to files (using
save_data), can be probed at particular points in space
(probe_subfield, probe_subfield_siv), or can be obtained from all
sites simultaneously (get_subfield). Some data can also be set (in
particular the applied field H_ext using set_H_ext and all the
subfields belonging to the field m using set_m).

3.4.4. Primary and secondary fields

There are two different types of fields in |nmag|: primary and
secondary fields.

Primary fields are those that the user can set
arbitrarily. Currently, these are the (normalised) magnetisation m
and the external field H_ext (which can be modified with set_m
and set_H_ext).

Secondary fields (which could also be called dependent fields) can
not be set directly from the user but are computed from the primary
fields.

3.5. Mesh

In finite element calculations, we need a mesh to define the geometry
of the system. For development and debugging purposes, |Nsim| includes
some (at present undocumented) capabilities to generate toy meshes
directly from geometry specifications, but for virtually all |Nsim|
applications, the user will have to use an external tool to generate a
(tetrahedral) mesh file describing the geometry.

3.5.1. Node

Roughly speaking, a mesh is a tessellation of space where the support
points are called mesh nodes. |nmag| uses an unstructured mesh
(i.e. the cells filling up three-dimensional space are tetrahedra).

3.5.2. node id

Each node in the finite element mesh has an associated node id. This
is an integer (starting from 0 for the first node).

This information is used when defining which node is connected to
which (see Finite element mesh generation for more details), and
when defining the sites at which the field degrees of freedom are
calculated.

3.5.3. node position

The position (as a 3d vector) in space of a node.

3.6. Site

A Mesh has nodes, and each node is identified by its node id.

If we use first order basis functions in the finite element
calculation, then a site is exactly the same as a node. In
micromagnetism, we almost always use first order basis functions
(because the requirement to resolve the exchange length forces us to
have a very fine mesh, and usually the motivation of using higher
order basis functions is to make the mesh coarser).

If we were to use second or higher order base functions, then we
have more sites than nodes. In a second order basis function
calculation, we identify sites by a tuple of node id.

3.7. SI object

We are using a special SI object to express physical entities (see
also SI). Let us first clarify some terminology:

	physical entity

	A pair (a,b) where a is a number (for example 10) and b is a product
of powers of dimensions (for example m^1s^-1) which we need to
express a physical quantity (in this example 10 m/s).

	dimension

	SI dimensions: meters (m), seconds (s), Ampere (A), kilogram (kg), Kelvin
(K), Mol (mol), candela (cd). These can be obtained using the units attribute of the SI object.

	SI-value

	for a given physical entity (a,b) where a is the numerical value and
b are the SI dimensions, this is just the numerical value a (and can be
obtained with the value attribute of the SI object).

	Simulation Units

	The dimensionless number that expressed an entity within the
simulation core. This is irrelevant to the user, except in highly
exotic situations.

There are several reasons for using SI objects:

	In the context of the micromagnetic simulations, the use of SI
objects avoids ambiguity as the user has to specify the right
dimensions and - where possible - the code will complain if these
are unexpected units (such as in the definition of material
parameters).

	The specification of units is more important when the
micromagnetism is extended with other physical phenomena (moving
towards multi-physics calculations) for which, in principle, the
software cannot predict what units these will have.

	Some convenience in having a choice of how to specify, for example,
magnetic fields (i.e. A/m, T/mu0, Oe). See also comments
in set_H_ext.

3.7.1. Library of useful si constants

The si name space in |nmag| provides the following constants:

To express the magnetisation in A/m equivalent to the polaration of 1
Tesla, we could thus use:

from nmag import si

myM = 1.5*si.Tesla/si.mu0

The command reference for SI provides some more details on the behaviour of SI objects.

3.8. Terms

3.8.1. Stage, Step, iteration, time, etc.

We use the same terminology for hysteresis loops as `OOMMF`_ (stage, step, iteration, time) and extend this slightly:

	step:	A step is the smallest possible change of the fields. This
corresponds (usually) to carrying out a time integration of the
system over a small amount of time dt. Step is an integer starting
from 0.

If we minimise energy (rather than computing the time development
exactly), then a step may not necessarily refer to progressing the
simulation through real time.

	iteration:	Another term for Step (deprecated)

	stage:	An integer to identify all the calculations carried out at one
(constant) applied magnetic field (as in `OOMMF`_).

	time:	The time that has been simulated (typically of the order of
pico- or nanoseconds).

	id:	This is an integer (starting from 0) that uniquely identifies
saved data. I. e. whenever data is saved, this number will increase by
1. It is available in the h5 data file and the Data files (.ndt) data files,
and thus allows
to match data in the ndt files with the corresponding (spatially resolved)
field data in the h5 file.

	stage_step:	The number of steps since we have started the current stage.

	stage_time:	The amount of time that has been simulated since we started this stage.

	real_time:	The amount of real time the simulation has been running
(this is the [wall] execution time) and therefore typically of the
order of minutes to days.

	local_time:	A string (human readable) with the local time. Useful in
data files to see when an entry was saved.

	unix_time:	The number of (non-leap) seconds since 1.1.1970 - this is
the same information as local_time but represented in a more computer
friendly way for computing differences.

3.8.2. Some geek-talk deciphered

	|nmag| uses some object orientation in the high-level user interface

	presented here. There are a few special terms used in object
orientation that may not be familiar and of which we attempt to give
a very brief description:

	method:	A method is just a function that is associated to an object.

3.9. Solvers and tolerance settings

There are a number of linear algebra solvers and one solver for
ordinary differential equations (ODEs) in |nmag|:

	two solvers for the calculation of the demagnetisation
field. Default values can be modified when creating the Simulation
object (this user interface is not final – if you really feel you
would like to change the defaults, please contact the nmag team so
we can take your requirements into account in the next release).

	one solver for the system of algebraic equations that results from
the time integrator’s implicit integration scheme.

(We need to document the default settings and how to modify this.)

	the ODE integrator.

Setting of the tolerances for the ODE integrator can be done with
set_params. An example of this is shown in section Example: Timestepper tolerances.

We expect that for most users, the tolerances of the ODE integrator
are most important (see Example: Timestepper tolerances) as this greatly affects
the performance of the simulation.

3.10. The equation of motion: the Landau-Lifshitz-Gilbert equation

The magnetisation evolution, as computed by the advance_time or the
hysteresis methods of the Simulation class, is determined by the
following equation of motion:

dM/dt = -llg_gamma_G * M x H + llg_damping * M x dM/dt,

which is the Landau-Lifshitz-Gilbert equation (we often use the abbreviation
“LLG”), a vector equation, where M, H and dM/dt are three
dimensional vectors and x represent the vector product.
This equation is used to dermine the evolution of each component
of the magnetisation.
For example, if the system has two materials with name m1 and m2,
then the magnetisation has two components M_m1 and M_m2 and
the equations:

dM_m1/dt = -llg_gamma_G_m1 * M_m1 x H_m1 + llg_damping_m1 * M_m1 x dM_m1/dt,

dM_m2/dt = -llg_gamma_G_m2 * M_m2 x H_m2 + llg_damping_m2 * M_m2 x dM_m2/dt,

determine the dynamics of M_m1 and M_m2.
Here H_m1 and H_m2 are the effective fields relative to the two
components, while with dM_m1/dt and dM_m2/dt we denote the two time
derivatives. The constant llg_gamma_G_XX in front of the precession term
in the LLG equation is often called “gyromagnetic ratio”, even if usually,
in physics, the gyromagnetic ratio of a particle is the ratio between its
magnetic dipole moment and its angular momentum (and has units A s/kg).
It is then an improper nomenclature, but it occurs frequently in the
literature. The llg_damping_XX constant is called damping constant.
Notice that these two constants are specified on a per-material basis.
This means that each material has its own pair of constants
(llg_gamma_G_m1, llg_damping_m1) and
(llg_gamma_G_m2, llg_damping_m2).
The two constants are specified when the corresponding material is created
using the MagMaterial class.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

4. Command reference

4.1. Command line options

|Nmag| supports a number of command line options to configure its behaviour.

Suppose the simulation script is called X.py, then these OPTIONS can be specified like this:

nsim X.py OPTIONS

X.py needs to contain at least the line import nmag as this will process the command line options.

The available options are:

	–clean:	to override any existing _dat.h5 and _dat.ndt files. If this
option is not provided and the data files exist already, then |nmag|
will interrupt the execution without having modified the data files
on the disk.

Example:

nsim X.py --clean

	–loglevel:	this switch determines the amount of information that is being send
to stdout (usually the screen) and also to the file X_log.log.

The available levels are in increasing order of detail:

	error:	print no messages apart from errors

	warning:	print warnings

	info:	print a moderate amount of information (default)

	info2:	print slightly more information

	debug:	print a lot of information (typically for developer and debugging use)

Example:

nsim X.py --loglevel info2

or:

nsim X.py --loglevel debug

	–slavelog:	Log message from slave nodes (when running under MPI) are usually
supressed. This switch activates them. Printing these messages will
reduce the MPI performance somewhat as the messages are printed to
stdout on each slave, and then have to be transferred through the
network to the master process.

Note that any log-messages from the nodes will only go to stdout
(whereas log messages from the master will also go into the log
file, see File names for log files.)

Messages from slave nodes are preceeded by S0X where X is the
rank of the node. I.e. log messages from slave node with rank 2,
would start with S02.

Example:

nsim X.py --slavelog

	–restart:	If a calculation of a hysteresis loop is interrupted (power cut,
computer crash, exceeding allocated run time on cluster, etc), then
the calculation can be carried out starting from the moment when the
last restart file was saved (see Restart example).

This continuation is activated with the --restart switch.

Example:

nsim X.py --restart

Note that this functionality is only available for the hysteresis loop.

The command line options can be combined, for example:

nsim X.py --clean --loglevel debug

There are a few other switches (mostly for debugging) which can be seen using:

nsim X.py --help

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

5. Finite element mesh generation

Finite element mesh generation is a difficult business, and one needs
to get used to using at least one mesh generating software package to
be able to create meshes for the geometries one wants to simulate.

A list of available free and commercial mesh generators is available at:
http://www.andrew.cmu.edu/user/sowen/softsurv.html

For |nmag| one needs to create ‘unstructured’ meshes which means for
three dimensional simulations that the mesh simplices are tetrahedra,
and the surface elements are triangles.

We are not recommending any mesh generating software. We have used
`Netgen`_ to generate most of the meshes for this manual. The
Vienna/Sheffield group (Fidler and Schrefl) use the commercial mesh
generator GID (http://gid.cimne.upc.es/).

The mesh format used by |nmag| is called |nmesh| and described in
Nmesh file format.

The nmeshimport tool provides conversion from the following mesh
formats into nmesh files:

	Netgen (neutral). Create mesh in Netgen, then go to File->Export
Filetype and ensure that Neutral Format is selected. Then
export the mesh with File->Export Mesh. (See also Mesh generation which is part of the Guided Tour.)

	There is a contributed import module for `Gambit`_. Use at your own risk.

	`Gmsh`_ meshes written file format version 1.0 can be imported.

If you already have the Gmsh mesh file in format 2.0, then you can use

$> gmsh -3 -format msh1 -o outfile.msh infile.msh

to create ‘outfile.msh’ which contains the mesh in the gmesh file format 1.0 that can be imported.

	If you create the mesh interactively, then

	
	choose FILE -> SAVE AS,

	select Gmsh mesh (*.msh) from the drop down list,

	choose filename and click OK

	When the MSH Options box appears, choose Version 1.0 from the
drop down list in the Format field.

	click OK

If you create your meshes automatically from the command line, then add --format msh1 to the command line
to instruct `Gmsh`_ to write in the 1.0 format.

5.1. Nmesh file format

There are two nmesh file formats: Ascii nmesh and Hdf5 nmesh.

5.1.1. Ascii nmesh

This section describes the syntax of the nmesh ascii files. You only
need to read this if you would like to know what the nmesh ascii
format looks like. This is only necessary if you (i) need to convert
nmesh ascii files into other mesh formats, or (ii) if you have
generated a mesh in a format that is not supported by nmeshimport.

(You could in principle convert any data into the nmesh hdf5 format
but it is expected that it is easier to convert the mesh into a nmesh
ascii file, and then use nmeshpp with option --convert to
convert the mesh frnm nmesh ascii to nmesh hdf5.)

We describe the structure of the ascii nmesh file format using the
following example: A mesh file for
a sphere with radius 1 (with `Netgen`_ and this geometry file
sphere.geo):

[image: _images/smallsphere.png]
The mesh file looks as follows:

PYFEM mesh file version 1.0
dim = 3 nodes = 79 simplices = 174 surfaces = 148 periodic = 0
79
 0.000000000000 0.000000000000 0.000000000000
 1.000000000000 0.000000000000 0.000000000000
 0.911922000000 0.410365000000 0.000000000000
 0.941662000000 0.159249000000 0.296499000000
<snip>
 0.038305000000 -0.552912000000 -0.107777000000
 -0.533150000000 0.052091000000 -0.084880000000
174
 1 58 0 62 78
 1 33 78 36 50
 1 19 77 0 17
 1 67 75 78 72
<snip>
 1 58 0 53 62
 1 77 51 32 39
 1 78 67 63 72
 1 78 49 63 50
148
 -1 1 45 51 59
 1 -1 5 12 13
 1 -1 25 37 39
<snip>
 1 -1 19 30 34
 1 -1 42 44 54
 1 -1 32 45 51

We have removed a significant number of lines for the purpose of
abbreviation in the places marked with <snip>. We discuss the
different parts of this file in more detail:

	The file starts with two lines starting with #.

	The first line contains a file format version string which needs to have
exactly this form.

	The second line contains a summary of the data, i.e.:

	dim

	the dimensionality of the space in which the mesh is defined (usually 3,
as we work with meshes in 3d space).

	nodes

	the number of nodes (also called vertices), here 79

	simplices

	the number of simplices (also called volume elements), here 174.
In 3d, a simplex is a tetrahedron.

	surfaces

	the number of surface elements, here 148. In 3d, the surface
elements are triangles.

	periodic

	the number of periodic identifications of points.

	The next section contains the data for all the nodes. The first line
of this section contains (again) the total number of nodes
(79). All subsequent 79 lines in this section contain each the
position of one node. Because the dimensionality of space in this
example is 3, there are 3 floating point numbers per node (i.e. the
x, y and z-component).

	The next section contains the data for the simplices. The first line
of this section contains (again) the total number of simplices (here
174). The next 174 lines contain the following information each:

The first integer is a region identifier. In this example, we have
only one region (the sphere). This is useful, if different magnetic
materials are simulated at the same time. When the mesh is loaded
into |nmag|, one assigns material properties to these regions.

The next 4 integers (in 3 dimensions) are node identifiers. The 4 nodes
listed here, form a simplex. Note that the very first node has index 0.

	The next section contains the data for the surface elements. The
first line contains the number of surface elements (148). The
next 148 lines contain each the following information:

	The first two integers are the region identifiers between which the
surface is sandwiched. If there is no simplex on one side of the surface,
then the “outside” region identifier of -1 will be used. (It is possible
to use other negative numbers to discern between different parts of the outer
boundary. This is occasionally important in |nsim| to specify Dirichlet and
von Neumann boundary conditions along different parts of a boundary.)

	The following integers are the node ids of the nodes that define
the surface. (In this example, we have three nodes as the surface
elements are triangles.)

Note that this last section is only contained in the file to make the
users’ life easier (for, say, plotting of the mesh). This section on
surface elements can be omitted and nmesh will read and process the mesh
even if the surface elements are not specified (they can be computed from
the node and simplex data provided in the other sections).

	The next section contains data about periodic points. The first line
again is the number of data lines to follow. Each data line gives the
node indices belonging to one set of points that are treated as
copies of the same point. (I.e. |Nmag| will know that field degrees of
freedom associated to points from such a set will have “mirage” copies and
use this information internally e.g. in the time integrator and when building
finite element matrix operators.)

5.1.2. Hdf5 nmesh

In addition to the Ascii nmesh format, there is another (binary and
compressed) way of storing nmesh meshes. This is based on the `hdf5`_
library which often is abbreviated as h5.

We recommend that this file-format to store meshes as it is a
compressed binary file format, and thus much more space efficient. The
nmeshpp tool can convert (using --convert) ascii nmesh files into
hdf5 files. Likewise, using the nmeshimport tool with a target file
name that ends in .h5 will also choose this file format. We
strongly recommend to use the extension .nmesh.h5 (but .h5 is
sufficient to trigger saving meshes in hdf5 format).

For conversion of other mesh formats to a format readable by |nmesh|,
we suggest to bring data into Ascii nmesh format, and then convert
this ascii nmesh file to a .h5 file.

For completeness, we outline the nmesh.h5 file format
here. Knowledge of `hdf5`_ or `pytables`_ may be useful to understand the
underlying concepts.

The nmesh.h5 file contains the following nodes (this is output from
`pytables`_‘s ptdump program):

/ (RootGroup) ''
/etc (Group) 'Configuration and version data'
/etc/filetype (Array(1L,)) 'data file type'
/etc/fileversion (Array(1L,)) 'data file type version'
/mesh (Group) 'Mesh data'
/mesh/points (CArray(1154L, 3L), shuffle,
 zlib(5)) 'Positions of mesh nodes (=points)'
/mesh/simplices (CArray(4953L, 4L), shuffle, zlib(5))
 'Indices of nodes (starting from zero).
 Each row is one simplex.'
/mesh/simplicesregions (CArray(4953L,), shuffle, zlib(5))
 'Region ids (one for each simplex).'

In short, the position of the mesh nodes are stored in
/mesh/points as 8byte-floats. The simplices (i.e. tetrahedra in
3d) are stored in /mesh/simplices as a set of integers (4 in 3d)
per simplex which are the indices of the mesh nodes that form the
simplex. We also need to store to what physical region each simplex
belongs. Regions are coded by integer values (with 0 being vacuum, and
-1 the area outside the mesh) and stored in /mesh/simplicesregions.

5.2. mesh file size

The following table shows the size of the mesh file used in Example 2: Computing the time development of a system stored in various formats.

	Filename
	size (kB)
	type

	bar30_30_100.neutral
	1036
	ascii

	bar30_30_100.neutral.gz
	246
	gzipped ascii

	bar30_30_100.nmesh
	794
	ascii

	bar30_30_100.nmesh.h5
	203
	hdf5

The .neutral file is the mesh as written by `Netgen`_ in this
particular format. The second line shows the file size of the same
file after compressing with gzip. The third line shows the size of
the mesh stored as an Ascii nmesh file while the last line gives
the size of the corresponding Hdf5 nmesh file.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

6. Executables

6.1. ncol

ncol is a utility to conveniently analyse Data files (.ndt) files.

Suppose we have data file with name X_dat.ndt. We can then use:

ncol X_dat.ndt

or simply:

ncol X

to display the content of the file. This is useful to quickly gain an
overview of the data in the file. For the Example 2: Computing the
time development of a system, the command is:

ncol bar

which produces this output:

0 : #time #<s> 0
1 : id <> 0
2 : step <> 0
3 : last_step_dt <s> 0
4 : stage_time <s> 0
5 : stage_step <> 0
6 : stage <> 0
7 : E_total_Py <kg/ms^2> -260346.5776034
8 : phi <A> 2.50626665111e-07
9 : E_ext_Py <kg/ms^2> 0
10: H_demag_0 <A/m> -263661.6673782
11: H_demag_1 <A/m> -8.212128727093
12: H_demag_2 <A/m> -77027.64089399
13: dmdt_Py_0 <A/ms> -8.250903922407e+15
14: dmdt_Py_1 <A/ms> 2.333345040949e+16
15: dmdt_Py_2 <A/ms> 8.250903922407e+15
16: pin <> 1
17: H_anis_Py_0 <A/m> 0
18: H_anis_Py_1 <A/m> 0
19: H_anis_Py_2 <A/m> 0
20: m_Py_0 <> 0.7071067811865
21: m_Py_1 <> 0
22: m_Py_2 <> 0.7071067811865
23: M_Py_0 <A/m> 608111.8318204
24: M_Py_1 <A/m> 0
25: M_Py_2 <A/m> 608111.8318204
26: E_anis_Py <kg/ms^2> 0
27: E_exch_Py <kg/ms^2> 3.114630036477e-11
28: rho <A/m^2> 3.469702141876e+13
29: H_ext_0 <A/m> 0
30: H_ext_1 <A/m> 0
31: H_ext_2 <A/m> 0
32: H_total_Py_0 <A/m> -263661.6673782
33: H_total_Py_1 <A/m> -8.212128727085
34: H_total_Py_2 <A/m> -77027.64089399
35: E_demag_Py <kg/ms^2> -260346.5776034
36: H_exch_Py_0 <A/m> 2.037901097873e-11
37: H_exch_Py_1 <A/m> 0
38: H_exch_Py_2 <A/m> 2.037901097873e-11
39: maxangle_m_Py <deg> 0
40: localtime <> 2007/10/04-20:46:28
41: unixtime <s> 1191527188.269

The four columns above show the following data: the first is just a
line number count. The second is the name of the data. The third
provides the units of this data type. The fourth displays the first
data value in the file (typically corresponding to the configuration
of the simulation when save_data was called the first time).

The meaning of the keywords time, id, step, stage_time,
stage_step, stage, localtime and unixtime is explained
in section Stage, Step, iteration, time, etc..

The role of the id counter is to provide a reference to the
configuration that was saved, and it is a unique identifier of a
physical configuration. It is used to identify configurations in the
_dat.h5 file (which stores spatially resolved fields) and to
identify the corresponding (spatially averaged) data in the
_dat.ndt file. This id is used to uniquely identify physical
configurations in nmag. (See also: Why can you not use the step as a unique identifier?)

last_step_dt is the length of the last time step carried out by
the timestepper. This is a useful indicator to learn about the
stiffness of the system: the time step is adjusted automatically to
achieve a certain accuracy, and thus the size of the time step
reflects how hard it is to integrate the equations of motion.

The fields starting with E_total_Py down to H_exch_Py_2 are
all nsim subfields (see fields), and the data stored for these are
spatially averaged numbers. For example, the subfield M_Py_0 is
the x-component of the Magnetisation of the material Py averaged
over all the space where this material is defined.

The maxangle_m_Py is the maximum angle (in degree) of the change
of the magnetisation from one node in the mesh to the next. It is
important that this number is small: the equations on which the
micromagnetic theory is based assume that the magnetisation changes
slowly as a function of space. In the discretised solvers (this
applies to |nmag| as it applies to OOMMF, Magpar and other codes),
this means that the maximum angle between neighbouring sites should be
kept small. How small is good enough? This is hard to say in
general. We provide some (subjective) guidance: Values of 180 degrees
(or -180 degrees) quite clearly indicate that the results of the
calculations must not be trusted (i.e. they are wrong). Values around
90 degrees make the results highly questionable. Values of below 30
degrees indicate that the results are probably reliable. The smaller
the value, the more accurate the results will be. If this is new to you, you may want to read the Mini tutorial micromagnetic modelling and in particular the section What size of the cells (FD) and tetrahedra (FE) should I choose?.

The general syntax for calling ncol is:

ncol [OPTIONS] datafile [COLS]

A list of options can be obtained with:

ncol --help

Available options include:

-h, --help show this help message and exit
--scale="{col1:factor1,col2:factor2,col3:factor3}"
 scale col1 by factor1, col2 by factor 2 etc
--last-of="column" Select only the rows where 'column' changes.
-l Select only the last row for each stage (i.e.
 typically the relaxed state)
--mod="field" Compute the magnitude of given field, i.e.
 '--mod H_demag' computes
 sqrt(H_demag_0^2+H_demag_1^2+H_demag_2^2). More than
 one field can be provided (comma separated) but there
 must be no spaces between the fields. (I.e. '--mod
 m_Py,H_ext'). These modulus entries will be printed
 last (after any other COLS that have been provided),
 and in the order given in the '--mod' switch.
--odt Expect to process odt file (as produced by OOMMF, see
 http://math.nist.gov/oommf/ and http://math.nist.gov/o
 ommf/doc/userguide12a3/userguide/Data_Table_File_Forma
 t_ODT.html).

6.2. nmagpp

The stage nmagpp program is the NMAG data PostProcessor. It can be used to

	convert data stored in RUNID_dat.h5 files into vtk files

	dump the data to the screen.

The documentation is available with the --help switch:

nmagpp --help

6.2.1. Inspecting the content

We describe some typical scenarios, using the data file bar_dat.h5
that is generated in Example 2: Computing the time development of a
system.

The bar_dat.h5 file contains spatially resolved data for all
fields in the simulation (because we have used the
save_data(fields='all') command). Some of the functions of
nmagpp apply to one or more fields (such as --dump and
--vtk) and these can be specified through a --fields command
line parameter. Similarly, the --range command will limit the number of saved configurations which will be processed.

Try nmagpp --help for further documentation. Some examples:

	Checking what at what configurations have been saved:

nmagpp --idlist bar

produces:

id stage step time fields
 0-> 1 0 0 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
10-> 1 312 5e-11 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
20-> 1 495 1e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
30-> 1 603 1.5e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
40-> 1 678 2e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
50-> 1 726 2.5e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho
60-> 1 762 3e-10 E_anis E_demag E_exch E_ext E_total H_anis H_demag ... phi pin rho

The id is the same unique identifier id used in the Data files (.ndt) files that can be
read with the ncol command. In particular, its purpose is to identify
time steps saved in the ndt file with the corresponding data saved in
the h5 data file.

Columns time (measured in seconds), step and stage are
just providing some further information (see Stage, Step, iteration, time, etc.) Finally, the available (i.e. saved) fields for every
configuration are listed. The list of fields is not displayed
completely if it is long (unless the --printall switch is used).

6.2.2. Dumping data

Suppose we are interested in the magnetisation data stored at id
0. We restrict the data to the m field using the --fields m switch, and restrict the number ids to dump using --range 0:

nmagpp --fields m --range 0 --dump bar

produces output that starts like this:

field : m
subfield : m_Py
time : 0 * <SI: 1 s >
id : 0
step : 0
stage : 0
field unit: <SI: 1 >
position unit: <SI: 1e-09 m >
row: 0
#Start (index in h5 table, dofsite, pos, data)
 0: 0 : (0, 0, 0) : (0.707107, 0, 0.707107)
 1: 1 : (3, 0, 0) : (0.707107, 0, 0.707107)
 2: 2 : (6, 0, 0) : (0.707107, 0, 0.707107)
 3: 3 : (9, 0, 0) : (0.707107, 0, 0.707107)

The first few rows provide some metadata such as which field and
subfield the data is about, at what simulation time it was saved (here
0 seconds), what the id, step and stage is. It further shows the
field unit and the position unit. These give the physical
dimensions with which the numerical quantities from the table have to
be multiplied to get dimensionful physical quantities. For example,
the positions in the table are provided as (0,0,0), (3,0,0),
(6,0,0) etc. These numbers have to be multiplied by
<SI: 1e-09 m > = 1e-9 meters to obtain the actual positions
in SI units. In other words, the position coordinate data is expressed in
nanometers. In this particular example, the field data – the normalised
magnetisation – is dimensionless.

Followed by the keyword #Start the actual data starts (in the next
line). The format of the subsequent data lines is as follows:

	Column 1: index of the site in the h5 file. This mostly relevant for
developers.

	Column 2: the index of the site. As long as we are dealing with
first order basis functions (as is nearly always the case in
micromagnetics), this is equivalent to the node id in the mesh.

	Columns 3, 4, 5: enclosed in parentheses, the position of the site
is expressed in units of the position unit.

	Columns 6, 7, 8: enclosed in parentheses, the actual field data
expressed in units of the field unit.

In short, the first line of the actual data:

0: 0 : (0, 0, 0) : (0.707107, 0, 0.707107)

tells us that the normalised magnetisation at node id 0, and
position (0,0,0) nm is pointing in the direction
(0.707107,0,0.707107).

Another example: Suppose we are interested in the magnetisation field
M (this is the non-normalised magnetisation measured in Ampere per
meter) at time 1e-10 seconds (i.e. id=20). We use this
command:

nmagpp --fields M --dump --range 20 bar

to obtain output beginning like this:

field : m
subfield : m_Py
time : 1e-10 * <SI: 1 s >
id : 20
step : 495
stage : 1
field unit: <SI: 1 >
position unit: <SI: 1e-09 m >
row: 2
#Start (index in h5 table, dofsite, pos, data)
 0 0 (0 0 0) (0.182556 0.525948 0.830694)
 1 1 (3 0 0) (0.165008 0.534525 0.828888)
 2 2 (6 0 0) (0.104837 0.544846 0.831957)
 3 3 (9 0 0) (0.029925 0.552054 0.833272)
 4

In principle, this output data can be parsed by other tools to extract
the positions and the data. However, it is hoped that other options of
the nmagpp tool (such as the --vtk switch) already cover most of
the situations where the need to convert data may arise. (If you would
like to export the raw data into another file format or application,
please contact the nmag team to request this feature, as it may be
of interest to other people as well.)

It is further possible to access the data in the _dat.h5 files
directly from tailor written post-processing scripts. See example:
post processing of saved field data.

6.2.3. Range of data to be processed

The --range switch allows a variety of ways to express which of
the ids in the data file should be selected (for dumping to the
screen, or conversion to a vtk file). Here are some examples:

--range 17 #will select 17
--range "range(5,10)" #will select [5,6,7,8,9]
--range "[2,5,10,42]" #will select [2,5,10,42]
--range "range(10)+[20,25,31,42]" #will select [0,1,2,3,...,9,10,20,25,31,42]
--range "max(ids)" #will select the last saved id

6.2.4. Conversion to vtk file

The command

nmagpp –range 0 –vtk test.vtk bar

will take the dataset with id=0 in the bar_dat.h5 file and convert it
to a (binary) vtk file with name test.vtk. For vtk files, the
default is to convert all fields. However, if a field (or a list of fields) is specified
using the --field option, then only this field is converted. This
may be useful if disk space or conversion time is an issue.

We can convert multiple time steps into a set of vtk files with one
command. For example, to convert for all saved configurations all
fields into vtk files, use:

nmagpp --vtk alltest.vtk bar

This will create files alltest-000000.vtk, alltest-000010.vtk,
alltest-000020.vtk, alltest-000030.vtk, alltest-000040.vtk,
alltest-000050.vtk, and alltest-000060.vtk.

The conversion to vtk can be combined with the --range command.
(See Range of data to be processed). For example, to convert every
second saved configuration (i.e. ids 0, 20, 40) into vtk files, we could use:

nmagpp --range "range(0,60,20)" --vtk x.vtk bar

The string “range(0,60,20)” is a Python expression and will evaluate
to [0,20,40] (because it is the list of integers starting from 0,
going up to [but not including] 60, in steps of 20). This will create
files x-000000.vtk, x-000020.vtk and x-000040.vtk.

6.2.5. Other features

Use:

nmagpp –help

to get an overview of other features of nmag, and further details.

6.3. nmeshpp

The nmeshpp program is the NMESHPreProcesser and NMESHPostProcessor.
It provides quick access to some statistical information
about nmesh meshes. The basic usage is

nmeshpp [OPTIONS] INPUTFILE [OUTPUTFILE]

where INPUT is the name of a nmesh file (either in ascii or hdf5
format), OUTPUTFILE is the name of the file to be written to (if
required; this depends on the OPTIONS) and OPTIONS can be one or
several of the options listed in the following subsections. We use the
mesh file bar30_30_100.nmesh.h5 from Example 2 to
illustrate the usage of nmeshpp.

6.3.1. General information (--info)

The command:

nmeshpp --info bar30_30_100.nmesh.h5

produces the following output:

====== Info output: ==
3-dimensional mesh
18671 volume elements (3d)
 3438 surface elements (2d)
 4086 points
 1 simplex regions ([1])
 2 point regions ([-1, 1])
 2 region volumes ([0.0, 89999.999999999782])
 1721 boundary points (-> BEM size<= 22MB)
 0 periodic points (mirage=0, total=0)
a0: average=3.543451, std=0.581220, min=1.953689, max=5.708395

Starting from the top of the output, we are given the information that
this is a three-dimensional mesh, with its number of volume elements
(i.e. tetrahedra in 3d), surface elements (i.e. surface triangles) and
points.

We are also given a list of simplex regions (which is just [1]
here). If we had more than one region defined (say two disconnected
spheres that are to be associated with different material), then we
would have two entries here. The numbers given in this list are the
identifiers of the regions: in this example there is only one region
and it has the identifier 1.

The point regions is a list of all regions in which points are
located. This includes of course region 1. Region -1 represents the
vacuum around the meshed region. The points that are located on the
surface of the bar are located both in the bar (region 1) and in the
vacuum (region -1). Other negative region numbers (-2, -3) can be used
to discern different pieces of a boundary. (While this feature is at
present not used by |Nmag|, the underlying |nsim| framework provides
capabilities to e.g. associate Dirichlet boundary conditions to a
1/-1 boundary and von Neumann boundary conditions to a 1/-2 boundary.)

The region volumes provide the geometrical volume of the regions. By
convention, the vacuum has volume 0. In this example, the bar volume
is meant to be 30x30x100=90000. The deviation from this due to limited
numerical precision (and of the order of 1e-10).

The boundary points are the number of nodes located at the surface
of the bar. This number is important if using the hybrid finite
element/boundary element method to compute the demagnetisation field,
as the boundary element matrix size will be proportional to the square
of the number of boundary points. The size of the boundary element
matrix is given as well (see Memory requirements of boundary element matrix).

The periodic points are the number of points that have mirage
images in the mesh. There will always be zero periodic points (and
thus zero mirage images) unless we are dealing with a periodic mesh
(see nmeshmirror and Example: Spin-waves in periodic system).

Finally, we are given some information about the statistics of the
edge lengths a0 in the mesh: the average value, the standard
deviation, the maximum and minimum value. This is important as in
micromagnetics the angle of the magnetisation must not vary strongly
from one node to the next. In practice, the edge length a0 should
therefore be (significantly) smaller than the exchange length (see
What size of the cells (FD) and tetrahedra (FE) should I choose?)

6.3.2. Memory requirements of boundary element matrix

The boundary element matrix is densely populated matrix with s rows
and s columns, where s is the number of surface nodes in the
mesh. (Strictly, it is only the number of surface nodes that enclose a
ferromagnetic material.) Assuming we use 8 bytes to store one floating
point number, we can thus estimate the memory required to store this
matrix. In the example above, we have 1721 boundary points, and thus
1721*1721=2961841 matrix entries. Each entry requires 8 byte, so the
total memory requirement is 23694728 bytes, or approximately 23139
kilobytes or 23 megabytes.

The nmeshpp -i command can be used to quickly check how big the
BEM matrix is. A computation is only feasible if the RAM of the
computer can hold the boundary element matrix. (When carrying out a
distributed calculation, it is sufficient if the total RAM of all
machines can hold the matrix.)

6.3.3. Inspecting the quality of a mesh

The quality of a mesh can be defined in various ways. In
micromagnetics, we usually want tetrahedra that have edges of nearly
identical length (i.e. we do not want the tetrahedra to be flat).

nmeshpp uses the ratio of the radius of the in-sphere (the sphere
that can just fit into a tetrahedron so that it touches the sides) to
radius of the circumsphere (the sphere passing through the four corners),
multiplied by the number of dimensions. This number is 1.0 for a
perfect tetrahedron with identical edge lengths, and 0 for a
completely flat (effectively 2-dimensional) tetrahedron.

The command:

nmeshpp -q bar30_30_100.nmesh.h5

computes a histogram of the distribution of this quality parameter for
the bar mesh, and produces this output:

====== Quality output: ==
[qual interval] counts = probability
[0.000- 0.100] 0 = 0.00%
[0.100- 0.200] 0 = 0.00%
[0.200- 0.300] 0 = 0.00%
[0.300- 0.400] 0 = 0.00%
[0.400- 0.500] 1 = 0.01% *
[0.500- 0.600] 42 = 0.22% *
[0.600- 0.700] 364 = 1.95% **
[0.700- 0.800] 2420 =12.96% ************
[0.800- 0.900] 8252 =44.20% **
[0.900- 1.000] 7592 =40.66% *************************************

6.3.4. Histogram of edge lengths

The command:

nmeshpp -a bar30_30_100.nmesh.h5

computes a histogram of the edge length distribution of the mesh:

====== a0 output: ===
[a0 interval] counts = probability
[1.954- 2.329] 234 = 0.63% **
[2.329- 2.705] 1424 = 3.81% *******
[2.705- 3.080] 7921 =21.17% *************************************
[3.080- 3.456] 8790 =23.50% **
[3.456- 3.831] 7573 =20.24% ***********************************
[3.831- 4.207] 5884 =15.73% ***************************
[4.207- 4.582] 3769 =10.08% ******************
[4.582- 4.957] 1385 = 3.70% *******
[4.957- 5.333] 365 = 0.98% **
[5.333- 5.708] 63 = 0.17% *

average a0: <a0> = 3.543451
stand dev a0: <a0^2> = 0.581220^2
min and max : =(1.953689,5.708395)

6.4. Convert nmesh.h5 to nmesh file (and back)

The command:

nmeshpp -c mesh.nmesh.h5 mesh.nmesh

converts a the mesh mesh.nmesh.h5 (in h5 format) to the mesh.nmesh (in ascii format). Works also in the reverse way. nmeshpp will save as h5 file if the last extension of the file to write is .h5.

6.4.1. nmeshmirror

The nmeshmirror tool can create periodic meshes out of a non-periodic mesh. The geometry described by the non-periodic mesh has to
be a cuboid. This can be mirrored along one (or more) of the planes
defined by the sides of the cuboid.

The general usage is

nmeshmirror meshfile error1 error2 directions newfile remove

where:

	meshfile is the original (non-periodic) ASCII nmesh file

	error1 is the maximum distance between two points in
order to consider them coincident (case of points on mirroring planes)

	error2 is the maximum distance between a point and the surface
opposite to the one used as mirroring plane in order to consider the
point periodic

	directions is a list of values 0,1 or -1, corresponding to the
direction(s) over which the mesh is mirrored: 1 corresponds to
mirroring along the positive given axis, -1 along the negative given
axis and 0 corresponds to no mirroring along the given axis.

For a three dimensional mesh, there are three options to mirror the
mesh (along the x, y and z direction). In that case, the
directions would be a list of three integers, for example
0,1,0 to mirror the input mesh on the xz plane that limits the
mesh in the y direction.

	newfile is the name of the ASCII file with the new periodic mesh

	remove is an optional argument which takes the values 0 and 1
and removes the periodic points from the final mesh when is set to 1.
The default value is 0.

Calling orig.nmesh the ASCII file of a 3D non-periodic mesh, an example
of the use of nmeshmirror is the following, where the mesh is mirrored
along the positive x-axis and the negative z-axis:

nmeshmirror orig.nmesh 1e-6 1e-6 1,0,-1 periodic.nmesh

resulting in a periodic mesh along the same axes.

6.4.2. nmeshsort

The nmeshsort script sorts the nodes of a mesh along a given axis
(not recommended when using parmetis with multiple-object meshes). We
expect this to be most relevant to developers.

The general usage is

nmeshsort meshfile axis newfile

where:

	meshfile is the original ASCII nmesh file

	axis is the axis over which the sorting takes place

	newfile is the name of the ASCII file with the new periodic mesh

Calling orig.nmesh the ASCII file of a 3D mesh, an example
of the use of nmeshsort is the following, where the mesh is sorted
along the z-axis:

nmeshsort orig.nmesh 2 sorted.nmesh

6.5. nmeshimport

The nmeshimport command can be used to read other mesh formats and write them into the nmesh format that can be read by |nmag|.

The nmeshimport tool can convert `Netgen`_, Gambit and `Gmsh`_ files
into nmesh files.

The general usage is:

nmeshimport OPTIONS INPUTFILE NMESHFILE

The OPTION to import from `Netgen`_ is --netgen. The (contributed)
code for importing from a Gambit mesh file is --gambit.
The OPTION to import from `Gmsh`_ is --gmsh.

Usage example: assuming we have a file mymesh.neutral created with
`Netgen`_ and would like to convert it to mymesh.nmesh.h5, we could
use this command:

nmeshimport --netgen mymesh.neutral mymesh.nmesh.h5

Use:

nmeshimport --help

to see all available features.

6.6. nsim

This is the main executable. It superficially appears to be a Python
interpreter, but has extended functionality. In particular, it has
support for parallel execution (using MPI), and contains extensions
accessible in the additional built-in ocaml module which provides
the additional functionality of the |nsim| multiphysics
system. (|Nmag| is a Python library on top of |nsim|, which itself is
implemented in Objective Caml.)

6.7. nsimversion

A script that provides some information about the version of the
software.

If you need to report a bug/problem, please include the
output of this program.

From release 0.2 onwards, please use:

nsim --version

instead.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

7. Files and file names

7.1. mesh files (.nmesh, .nmesh.h5)

Files that contain a finite element mesh. See Nmesh file format.

7.2. Simulation scripts (.py)

Files that contain simulation program code. The ending is (by
convention) .py which reflects that the programming language used
is Python.

All the example codes provided in the Guided Tour are such simulation scripts.

7.3. Data files (.ndt)

ndt stands for |Nmag| Data Table, analog to odt files (`OOMMF`_
Data Table) for the OOMMF project. In fact, ndt and odt files
are very similar.

ndt files are ascii files where each row corresponds to one time
step (or, more generally, configuration of the system). The columns
contain:

	metadata such as
	a unique identifier for every row

	the time at which the row was written

	(spatially) averaged field data

The first two lines contain information about what data is stored in the various columns:

	The first line provides a header

	The second line provides the SI units

All other lines contain the actual data.

The file can be loaded into any data processing software (such as MS
Excel, Origin, Matlab, Gnuplot, ...). However, often it is more
convenient to use the ncol tool to select the relevant columns, and
only to pass the filtered data to a post-processing (e.g. plotting)
program.

Data is written into the ndt file whenever the save_data method
of the simulation object is called.

7.4. Data files (.h5)

The h5 data files store spatially resolved fields. The format is
a binary and compressed `hdf5`_ format to which we have convenient
access via the `pytables`_ package for Python. The user should not have
to worry about reading this file directly, but use the nmagpp tool to
access the data.

7.5. File names for data files

The filenames for the Data files (.ndt) and Data files (.h5) are given by
concatenation of the simulation name, the extension _dat. and
the extension (.h5 or .ndt).

When a simulation object is created, for example in a file called
mybar.py starting like this:

import nmag
sim = nmag.Simulation(name="bar")

then the simulation name is bar.

If no name is provided, i.e. the file mybar.py starts like this:

import nmag
sim = nmag.Simulation()

then the simulation name will be the run id. The run id is the
filename of the simulation script (without the .py extension),
i.e. the simulation name then will be mybar.

Let us assume for the rest of this section that the simulation name
is bar. Once we use the save_data command, for example like this:

sim.save_data()

an ndt file will be created, with name bar_dat.ndt (= bar
+ _dat. + ndt).

Similarly, if we write the fields spatially resolved:

sim.save_data(fields='all')

a h5 data file with name bar_dat.h5 (= bar + _dat. + h5)
will be created.

7.6. File names for log files

A log file is created that stores (most of) the messages displayed to
stdout (i.e. the screen). The name of the log file starts with the
name of the simulation script (without the .py extension), and ends with _log.log.

For example, a simulation script with name mybar.py will have an
associated log file with name mybar_log.log.

Another three files will be created if the (undocumented)
--dumpconf switch is provided. This are primarily of use to the
developers and can usually be ignored:

	mybar_log.conf:
This can be used to configure what data is logged.

	mybar_ocaml.conf:
Configuration of some variables used in the ocaml code

	mybar_nmag.conf:
Some variables used in the nmag code

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

8. Frequently Asked Questions

	What is the difference between the OOMMF and |nmag| approach?

	... So, this means the major difference is “cubes” vs. “tetrahedra”?

	Why do you have your own Python interpreter (=nsim)?

	What is nsim - I thought the package is called |nmag|?

	How fast is nmag in comparison to magpar?

	How do I start a time-consuming nmag run in the background?

	nmag claims to support MPI. So, can I run simulation jobs on multiple processors?

	How should I cite nmag?

	Why can you not use the step as a unique identifier?

	How to generate a mesh with more than one region using GMSH?

	Can I run more than one simulation in one directory?

	Can I save data to an arbitrary directory?
	Do you really need to do so?

	How to save data to a different directory

	How to check the convergence of a simulation

	What to do in case of convergence problems

	How to visualise the difference between two fields defined over the same mesh

	How to re-sample data from a saved h5 file

	Notes on using GMSH to create a family of related meshes

8.1. What is the difference between the OOMMF and |nmag| approach?

There are several aspects. One important point is the calculation of
the demagnetisation field as this is a computationally very expensive step.

`OOMMF`_ is based on discretising space into small cuboids (often called
‘finite differences’). One advantage of this method is that the demag
field can be computed very efficiently (via fast Fourier
transformation techniques). One disadvantage is that this methods
works less well (i.e. less accurately) if the geometry shape does not
align with a cartesian grid as the boundary then is represented as a
staircase pattern.

|nmag|‘s finite elements discretise space into many small
tetrahedra. The corresponding approach towards the computation of the
demagnetisation field (which is the same as `Magpar`_‘s method) is based
on the Fredkin and Koehler Hybrid Finite Element/Boundary Element
method. The advantage of this method (over OOMMF’s approach) is that
curved and spherical geometries can be spatially resolved much more
accurately. However, this method of calculating the demagnetisation
field is less efficient than OOMMF’s approach for thin films. (In
particular: memory requirements for the boundary element method grow
as the square of the number of surface points.) Note that for
simulation of thin films, the hybrid Finite Element/Boundary Element
(as used by |nmag| and `Magpar`_) is likely to require a lot of memory
(see Memory requirements of boundary element matrix).

There are other points that are related to the fundamentally different
discretisation approach used to turn a field theory problem (with a
conceptually infinite number of degrees of freedom) into a finite
problem: OOMMF assumes the magnetisation in every cell to be constant
(with jumps at boundaries), while |Nmag| assumes magnetisation to be
continuous and vary linearly within cells (thus slightly violating the
constraint of constant magnitude within a cell of non-constant
magnetisation).

8.2. ... So, this means the major difference is “cubes” vs. “tetrahedra”?

No. Simplicial mesh discretisation is fundamentally different from
finite-difference discretisation. With OOMMF, say, magnetisation
degrees of freedom are associated with the centers(!) of the cells,
while with nmag, they are associated with corners. This conceptual
difference has many implications, e.g. for the question how to
conceptually deal with the exchange interaction between different
materials.

8.3. Why do you have your own Python interpreter (=nsim)?

In order to provide the ability to run code in a distributed
environment (using MPI), we cannot use the standard Python
executable. (Technically speaking, a program started under MPI control
will receive extra MPI-related command line arguments which upset the
standard Python interpreter.) It so happens that – by providing our
own Python executable which is called nsim – we have easier
access to the low-level library of |nsim| which is written in
Objective Caml.

8.4. What is nsim - I thought the package is called |nmag|?

The The |Nsim| library is our general purpose multi-physics simulation
environment. The corresponding executable is started through the nsim
command. |Nmag| is a collection of scripts that provide micromagnetic
functionality on top of nsim. For this reason, nsim is being mentioned
a lot in the manual.

8.5. How fast is nmag in comparison to magpar?

Internally, some of the magpar and nmag core components are
structurally very similar. In particular, the time integration routine
is almost identical up to some philosophical issues such as how to
keep the length of the magnetisation vector constant, and whether or
not to use a symmetrical exchange matrix and a post-processing step
rather than combining these into an asymmetrical matrix, etc. The
actual wall clock time used will depend to a large degree on the
requested accuracy of the calculations (see example timestepper
tolerances).

Given equivalent tolerance parameters, we have found (the
single-process version of) nmag to be about as fast as magpar. The
computation of an individual velocity dM/dt is very similar in nmag
and magpar, and about equally efficient. However, we observe that,
depending on the particular problem, subtle differences in the
philosophies underlying time integration can lead to noticeable
differences in the number of individual steps required to do some
particular simulation, which can be up to about 25% of simulation time
in either direction.

Setup time is a different issue: nmag derives its flexibility from
abstract approaches where magpar uses hard-coded compiled
functions. Where magpar uses a hand-coded Jacobian, nmag employs the
nsim core to symbolically compute the derivative of the equations of
motion. There is a trade-off: the flexibility of being able to
introduce another term into the equations of motion without having to
manually adjust the code for the Jacobian comes at a price in
execution time. Therefore, nmag’s setup time at present is far larger
than magpar’s. This can be alleviated to a considerable degree by
providing hard-coded “bypass routines” which can be used as
alternatives to the symbolically founded methods for special
situations that are frequently encountered (such as setting up a
Laplace operator matrix). Conceptually, it is easy to add support for
this but due to limited manpower, it has not happened yet.

In short: once the setup stage is over, nmag is about as fast as
magpar. Magpar’s setup time, however, is much smaller.
Magpar is also more efficient in memory usage.

8.6. How do I start a time-consuming nmag run in the background?

While this is a Unix rather than a nmag issue, it comes up
sufficiently often to address it here.

Well-known techniques to run programs in the background are:

	Using the “nohup” (no-hangup) command, as in:

nohup nsim sphere1.py &

	Using the at-daemon for scheduling of command execution at
given times:

at now
warning: commands will be executed using /bin/sh
at> nsim example1.py
at> <EOT>
job 2 at Fri Dec 14 12:08:00 2007

	Manual daemonization by using a parent process which forks & exits,
as in:

perl -e 'exit(0) if fork(); exec "nsim sphere1.py"'

(But if you know Unix to that degree, you presumably would
not have asked in the first place.)

	One of the most elegant ways to start a process in the background
is by using the “screen” utility, which is installed on a number of
Unix systems. With “screen”, it becomes possible to start a text
terminal session in such a way that one can “detach” from it while
keeping the session alive, and even log out and log in again much
later and from a different machine, re-attaching the terminal
session and continuing work from the point where it was left.

While it is a good idea to read the documentation, most basic usage of
“screen” requires the knowledge of three commands only:

	With “screen -R”, one can re-attach to a running session,
automatically creating a new one if none was created before.

	Within a “screen” session, Control+a is a prefix keyboard command
for controlling “screen”: Pressing Control-a and then Control-d
will detach the session.

	Control-a ? will being up a help screen showing all “screen”
keyboard commands.

8.7. nmag claims to support MPI. So, can I run simulation jobs on multiple processors?

Yes. See Example: Parallel execution (MPI).

8.8. How should I cite nmag?

Please cite:

	Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, and Hans
Fangohr. A Systematic Approach to Multiphysics Extensions of
Finite-Element-Based Micromagnetic Simulations: Nmag, in IEEE
Transactions on Magnetics, 43, 6, 2896-2898 (2007). (Available online [http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4202717])

8.9. Why can you not use the step as a unique identifier?

There are two reasons. Firstly, |nmag| may be extended in future to
support effective energy minimisation in which case the step
becomes somewhat meaningless (although it could probably still be used
as an identifier if we identify minimisation iterations with
steps). Secondly (and more importantly), in |nmag|, the user can modify
the magnetisation directly using set_m (either scripted or
interactively). This will change the configuration of the system
without increasing the step counter of the time integrator. For this
reason, we have the unique identifier id.

8.10. How to generate a mesh with more than one region using GMSH?

To assign different material properties to different objects, the mesher needs to assign different region number to different simplices of the mesh. The manual shows how to do this for netgen (see two_cubes.geo) file in example Example: two different magnetic materials).

How does one define different regions using GMSH? User Xu Shu (Wuhan,
China) kindly provides this solution:

Within GMSH, one has to firstly “add physical groups” and choose the
two detached volumes separately to add them into different groups,
then choose “edit” to redefine the number of the two groups, thus you
can get two physical objects as you want.

8.11. Can I run more than one simulation in one directory?

If you want to run two (or more) simulations in the same directory,
then this is fine as well as long as they have different simulation names.

The simulation name is either the string given to the constructor of
the simulation object, or – if no name is defined explicitly – the
name of the python file that contains the simulation script (without
the .py extension). See File names for data files for a detailed
example for this.

Data and log files will all start with the simulation name, followed
by some specific appended string and specific file extensions. It is
thus safe to run simulations with different names in the same
directory.

8.12. Can I save data to an arbitrary directory?

8.12.1. Do you really need to do so?

First, consider whether you really need to save data in a different
directory. Remember that you can run many simulation with one single
script just using a different simulation name, like:

...
s1 = Simulation('one')
...
s2 = Simulation('two')
...

When you save the data for simulation one you get files like
one_dat.h5 and one_dat.ndt, while when dealing with simulation two you get two_dat.h5 and two_dat.nd5. There is no interference
between the two simulations (and in particular it is necessary to save thedata in different directories.)

8.12.2. How to save data to a different directory

When you run a simulation script which saves data from a simulation,
the files are saved by default in the current working directory. In
order to change this and save data into a directory called ./mydir/
you should start your script in the following way:

import nmag
import nsim.features
fts = nsim.features.Features()
fts.set('etc', 'savedir', './mydir/')
...
...

Alternatively, you can change the current working directory at the
beginning of the file with ordinary Python code:

import os
initial_dir = os.path.abspath(os.path.curdir)
os.chdir('./mydir')
...
...
os.chdir(initial_dir)

If the directory you want to write to does not exist then (in both the
two example) you may have to create it first, with something like:

the_dir = './mydir'
import os
if not os.path.exists(the_dir):
 os.mkdir(the_dir)

8.13. How to check the convergence of a simulation

How long it takes to run a simulation? This depends very much on what
you are simulating and under what conditions (applied field, current,
etc). Sometimes, however, your simulation may not be ending as quickly as
you expected and you may want to check what is happening. It may be,
indeed, that the simulation is not converging, which means that it may
actually never end. One thing you can do in such a case is to take a
look at the file *_progress.txt, where * stands for the simulation
name (given to the Simulation class when creating the simulation
oject). For example, if you created your simulation object with a line
such as:

s = nmag.Simulation('one')

Then you may be looking for a file with name one_progress.txt. If
you used simply s = nmag.Simulation() and your file is named
two.py then you should look for a file with name
two_progress.txt. This file contains statistics about the time
integrator. You’ll first get the current time, step number, etc. Then
you’ll get a list of rows each containing four columns, such as:

123 0.456 0.123 None

Column 1 is the step reached, an integer number which always
increases. The file shows convergence statistics for the last few
steps (it doesn’t contain statistics for all the steps, since this
would make it quickly very big). Column 2 contains the current value
of max || dM/dt ||. Column 3 contains the stopping value of
dM/dt. Convergence is reached when column 2 < column 3 for at least
two times. If the simulations is going well, then you should see that
column 2 contains numbers which are not oscillating rapidly and are
rather decreasing or increasing “smoothly”. This is what typically
should happen, even if it can be that your simulation has really a
bizarre dynamics which really oscillates in a frenetic way, so one
should be careful when analysing the data. The fourth column contains
an evaluation of the quality of the convergence according to what we
just said. This number should be close to one when the convergence is
smooth and close to zero when it is oscillating dramatically.

8.14. What to do in case of convergence problems

If your simulation has really a convergence problem, you can do two
things:

	improve the tolerances ts_abs_err and ts_rel_err
(decrease these numbers) by using the method set_params of the
Simulation object;

	use a do=[('next_stage', at('stage_time',SI(x, 's')))] as an
argument to the hysteresis method. This way
you impose a maximum time x to spend in the computation of a stage
(you should make sure this makes sense in your case).

8.15. How to visualise the difference between two fields defined over the same mesh

First save the data into two ASCII VTK files. For example:

nmagpp --vtk=m.vtk --vtkascii --fields=m simulation_name

Note the option "--vtkascii" to force the creation of a ASCII file.
Let’s say this command created the two files m-000000.vtk and m-000001.vtk.
You can now use the library pyvtk to load the two files, compute the difference and save it back to a third file:

import numpy, pyvtk
a = pyvtk.VtkData("m-000000.vtk")
b = pyvtk.VtkData("m-000001.vtk")
va = a.point_data.data[0].vectors
vb = b.point_data.data[0].vectors
for i in range(len(va)):
 va[i] = list(numpy.array(va[i]) - numpy.array(vb[i]))
a.tofile("difference.vtk")

Save this text to a file named diff.py and run it as:

python diff.py

You’ll get a third file with name difference.vtk containing the difference of the two fields.

If you are repeating this operation many times, it may become annoying to open again and again the diff.py file to change the names of the input files. You can then modify the script as follows:

import sys, numpy, pyvtk
a = pyvtk.VtkData(sys.argv[1])
b = pyvtk.VtkData(sys.argv[2])
va = a.point_data.data[0].vectors
vb = b.point_data.data[0].vectors
for i in range(len(va)):
 assert a.structure.points[i] == b.structure.points[i]
 va[i] = list(numpy.array(va[i]) - numpy.array(vb[i]))
a.tofile(sys.argv[3])

The name of the files are taken from the command line. You can then compute the difference using:

python diff.py a.vtk b.vtk a_minus_b.vtk

Notice that in the last version of the script we also added the line:

assert a.structure.points[i] == b.structure.points[i]

which does just check that the two files are using the same set of points (i.e. the same mesh).

8.16. How to re-sample data from a saved h5 file

(Available in Nmag-0.2.0)

You can load an h5 file like this

import ocaml
from nmag.h5probe import Fields
handler = Fields("infile.h5")
field = handler.set_field_data("m", "Py", 0)

And probe one of its fields:

position = [0, 1, 2] # In mesh units (typically is nanometres)
value = ocaml.probe_field(field, "m_Py", position)[0][1]

This way you can create two arrays: rs containing an array of points and vs containing the corresponding values.
You can then use pyvtk to generate a VTK file from these:

import pyvtk

grid = pyvtk.UnstructuredGrid(rs)
data = pyvtk.PointData(pyvtk.Vectors(vs))
v = pyvtk.VtkData(grid, data)
v.tofile("outfile.vtk")

Here is a full example, which probes the magnetisation in the outer skin of a cylinder, in sections which are not equally spaced.
Notice the usage of the function float_set to specify where the sampling should be denser (originally, here is where a domain wall was).
The script should be used as nsim probe.py infile.h5 outfile.vtk:

import math
import sys

import pyvtk

import ocaml
from nmag.h5probe import Fields
from nmag import float_set

First we probe the field in the required points
handler = Fields(sys.argv[1])
field = handler.set_field_data("m", "Py", 0)

xs = float_set([-150.0, -145.0, [], -15.0, -12.5, [], 15.0, 20.0, [], 50.0])
angles = float_set([0, [20], 2*math.pi])
R, R2 = (4.9, 5.1)

rs = []
vs = []
for x in xs:
 for angle in angles:
 r = [x, R*math.cos(angle), R*math.sin(angle)]
 rs.append([x, R2*math.cos(angle), R2*math.sin(angle)])
 vs.append(ocaml.probe_field(field, "m_Py", r)[0][1])

Now we output the values to a VTK file
grid = pyvtk.UnstructuredGrid(rs)
data = pyvtk.PointData(pyvtk.Vectors(vs))
v = pyvtk.VtkData(grid, data)
v.tofile(sys.argv[2])

8.17. Notes on using GMSH to create a family of related meshes

If you want to create many meshes using Gmsh, you may first generate a
mesh manually. Then you can create a Python script which uses this
mesh as a template to quickly create a mesh for a different set of
parameters. Below is such a script which shows how to do so. The mesh
file (geo) has been enclosed between quotes """ and some of the
values for the points coordinates have been substituted with strings
that the Python script substitutes with real values.

Note that we use Mesh.CharacteristicLengthFactor = 5.0; to control
the discretisation of the mesh. We also use Physical Volume(1) =
{1}; to make sure that the mesh region is labeled starting from
region number 1:

mesh = """
cl1 = 1;
Point(1) = {$x2$, 0, 0, cl1};
Point(2) = {$x2$, $x2$, 0, cl1};
Point(3) = {0, $x2$, 0, cl1};
Point(4) = {0, $x1$, 0, cl1};
Point(5) = {$x1$, 0, 0, cl1};
Point(6) = {$x0$, $x0$, 0, cl1};
Point(7) = {$x0$, $x1$, 0, cl1};
Point(8) = {$x1$, $x0$, 0, cl1};
Point(9) = {$x2$, 0, $y1$, cl1};
Point(10) = {$x1$, 0, $y1$, cl1};
Point(14) = {$x1$, $x0$, $y1$, cl1};
Point(18) = {$x0$, $x0$, $y1$, cl1};
Point(19) = {$x0$, $x1$, $y1$, cl1};
Point(23) = {0, $x1$, $y1$, cl1};
Point(27) = {0, $x2$, $y1$, cl1};
Point(31) = {$x2$, $x2$, $y1$, cl1};
Line(1) = {1, 5};
Line(2) = {5, 8};
Circle(3) = {8, 6, 7};
Line(4) = {7, 4};
Line(5) = {4, 3};
Line(6) = {3, 2};
Line(7) = {2, 1};
Line(11) = {9, 10};
Line(12) = {10, 14};
Circle(13) = {14, 18, 19};
Line(14) = {19, 23};
Line(15) = {23, 27};
Line(16) = {27, 31};
Line(17) = {31, 9};
Line(19) = {1, 9};
Line(20) = {5, 10};
Line(24) = {8, 14};
Line(28) = {7, 19};
Line(32) = {4, 23};
Line(36) = {3, 27};
Line(40) = {2, 31};
Line Loop(9) = {1, 2, 3, 4, 5, 6, 7};
Plane Surface(9) = {9};
Line Loop(21) = {1, 20, -11, -19};
Ruled Surface(21) = {21};
Line Loop(25) = {2, 24, -12, -20};
Ruled Surface(25) = {25};
Line Loop(29) = {3, 28, -13, -24};
Ruled Surface(29) = {29};
Line Loop(33) = {4, 32, -14, -28};
Ruled Surface(33) = {33};
Line Loop(37) = {5, 36, -15, -32};
Ruled Surface(37) = {37};
Line Loop(41) = {6, 40, -16, -36};
Ruled Surface(41) = {41};
Line Loop(45) = {7, 19, -17, -40};
Ruled Surface(45) = {45};
Line Loop(46) = {11, 12, 13, 14, 15, 16, 17};
Plane Surface(46) = {46};
Surface Loop(1) = {9, 46, 21, 25, 29, 33, 37, 41, 45};

Volume(1) = {1};

Physical Volume(1) = {1};

Mesh.CharacteristicLengthFactor = $discret$;
"""

def create_mesh(filename,
 inner_size=100.0,
 curvature=5.0,
 width=10.0,
 thickness=20.0,
 discretisation=2.5):
 global mesh
 s = str(mesh)
 x = 0.5*inner_size
 variables = [("x0", x - curvature),
 ("x1", x),
 ("x2", x + 0.5*width),
 ("y1", thickness),
 ("discret", discretisation)]
 for variable_name, variable_value in variables:
 s = s.replace("$%s$" % variable_name, str(variable_value))

 f = open(filename, "w")
 f.write(s)
 f.close()

create_mesh("dots.geo")

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

9. Useful tools

9.1. vtk

The homepage of the Visualisation ToolKit (vtk) is
http://www.vtk.org. VTK provides is is an open source, freely
available software system for 3D computer graphics, image processing,
and visualization. It also provides a file-format which is called
‘vtk’. A number of high-level user interfaces exist to visualise data
provided in such vtk files. These include:

	MayaVi (http://mayavi.sourceforge.net/)

	VisIt (http://www.llnl.gov/visit/)

	ParaView (http://www.paraview.org/)

9.2. MayaVi

“MayaVi is a free, easy to use scientific data visualizer. It is
written in Python and uses the Visualization Toolkit (VTK) for
graphical rendering. MayaVi is free and distributed under the
conditions of the BSD license. It is also cross platform and should
run on any platform where both Python and VTK are available (which is
almost any Unix, Mac OSX or Windows).” The MayaVi web page is
http://mayavi.sourceforge.net/.

MayaVi has been used to generate many of the plots in this manual.
Other tools are available for visualisation of vtk files (see vtk).

9.3. NumPy

Numerical Python (short numpy) is an extension library to Python
that provides fast array operations and is designed for numerical
work. This Python extension and documentation can be found at
http://numpy.scipy.org/

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

10. Contact

The nmag developer team can be contacted at
nmag@soton.ac.uk.

Questions about the usage of nmag can also be send to the nmag-users mailing list.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Nmag 0.2 documentation

11. Mini tutorial micromagnetic modelling

This section is intended for researchers who are just beginning to
explore micromagnetic modelling. It is assumed that you have some
knowledge on micromagnetics. We advise to read this whole section, and
then to look the Guided Tour examples (or to explore other
Micromagnetic packages at that point).

11.1. Introduction micromagnetic modelling

To carry out micromagnetic simulations, a set of partial differential
equations have to be solved repeatedly. In order to be able to do
this, the simulated geometry has to be spatially discretised. The two
methods that are most widely spread in micromagnetic modelling are the
so-called finite difference (FD) method and the finite element (FE)
method. With either the FD or the FE method, we need to integrate the
Landau-Lifshitz and Gilbert equation numerically over time (this is a
coupled set of ordinary differential equations). All these
calculations are carried out by the Micromagnetic packages and the
user does not have to worry about these.

The finite difference method subdivides space into many small
cuboids. Sometimes the name cell is used to describe one of these
cuboids. (Warning: in finite difference simulations, the simulated
geometry is typically enclosed by a (big) cuboid which is also
referred to as simulation cell. Usually (!) it is clear from the
context which is meant.) Typically, all simulation cells in one
finite difference simulation have the same geometry. A typical size
for such a cell could be a cube of dimensions 3nm by 3nm by 3nm.

Let’s assume we would like to simulate a sphere. The following picture

[image: ../_images/fd.png]
shows an approximation of the shape of the sphere by cubes. This is
the finite difference approach. For clarity, we have chosen rather
large cubes to resolve the sphere – in an actual simulation one would
typically use a much smaller cell size in order to resolve geometry
better.

On the other hand, the finite element method (typically) subdivides
space into many small tetrahedra. The tetrahedra are sometimes
referred to as the (finite element) mesh elements. Typically, the
geometry of these tetrahedra does vary throughout the simulated
region. This allows to combine the tetrahedra to approximate
complicated geometries.

Using tetrahedra, the a discretised sphere looks like this:

[image: ../_images/fe.png]
The spherical shape is approximated better than with the finite
differences.

The first step in setting up a micromagnetic simulation is to describe
the geometry. In the case of finite difference calculations, it will
depend on the package you use (currently there is only `OOMMF`_ freely
available) how to tell the package what geometry you would like to
use, and how small your simulation cells should be.

In the case of finite element calculations, you need to create a
finite element mesh (see Finite element mesh generation).

11.2. What is better: finite differences or finite elements?

This depends on what you want to simulate. Here are some points to consider.

	Finite difference simulations are best when the geometry you
simulate is of rectangular shape (i.e. a cube, a beam, a geometry
composed of such objects, a T profile, etc). In these situations,
the finite element discretisation of the geometry will not yield any
advantage. (Assuming that the finite difference grid is aligned with
the edges in the geometry.)

	Finite difference simulations need generally less computer memory
(RAM). This is in particular the case if you simulate geometries
with a big surface (such as thin films). See Memory requirements of boundary element matrix for a description of the memory
requirements of the hybrid finite element/boundary element simulations (both
|Nmag| and `Magpar`_ are in this category).

If this turns out to be a problem for you, we suggest to read the section
Compression of the Boundary Element Matrix using HLib.

	Finite element simulations are best suited to describe geometries
with some amount of curvature, or angles other than 90 degrees. For
such simulations, there is an error associated with the staircase
discretisation that finite difference approaches have to use. This
error is very much reduced when using finite elements.

(We state for completeness that there are techniques to reduce the
staircase effect in finite difference simulations but these are
currently not available in open source micromagnetic simulation
code.)

	For finite element simulations, the user has to create a finite
element mesh. This requires some practice (mostly to get used to a
meshing package), and in practice will take a significant amount of
the time required to set up a finite element simulation.

11.3. What size of the cells (FD) and tetrahedra (FE) should I choose?

There are several things to consider:

	the smaller the cells or tetrahedra, the more accurate the
simulation results.

	the smaller the cells or tetrahedra, the more cells and tetrahedra
are required to describe a geometry. Memory requirements and
execution time increase with the number of cells and tetrahedra. In
practice this will limit the size of the system that can be
simulated.

	the discretisation length (this is the edge length of the cells or
the tetrahedra) should be much smaller than the exchange
length. The reason for this is that in the derivation of the
micromagnetic (Brown’s) equations, one assumes that the
magnetisation changes little in space (there is a Taylor expansion
for the exchange interaction). Therefore, we need to choose a
discretisation length so that the direction of the magnetisation
vectors varies little from one site (cell center in FD, node of
tetrahedron in FE) to the next. The difference of the magnetisation
vector is sometimes referred to as the ‘spin angle’: a spin angle of
0 degrees, means that the magnetisation at neighbouring sites points
in the same direction, whereas a spin angle of 180 degrees would mean
that they point in exactly opposite directions.

How much variation is acceptable, i.e. how big is the spin angle
allowed to be? It depends on the accuracy required. Some general
guidelines from M. Donahue [in email to H. Fangohr on 26 March
2002 referring to OOMMF] which we fully endorse :

[Begin quote M. Donahue]

	if the spin angle is approaching 180 degrees, then the results are
completely bogus.

	over 90 degrees the results are highly questionable.

	Under 30 degrees the results are probably reliable.

[end quote]

It is absolutely vital that the spin angle does not become
excessive if the simulation results are to be trusted. (It is
probably the most common error in micromagnetics: one would like to
simulate a large geometry, thus one has to choose the discretisation
length large to get any results within reasonable time. However, the
results are often completely useless if the spin angle becomes too
large).

Because this is such an important issue, OOMMF – for example –
provides Max Spin Ang data in its odt data table file (for
the current configuration, the last stage, and the overall
run). |Nmag| has a columns maxangle_m_X in the Data files (.ndt) file that
provide this information (where X is the name of the magnetic
material).

You will probably find that often a discretisation length of half
the Exchange length or even about the Exchange length is
chosen. If the spin angle stays sufficiently low during the whole
simulation (including intermediate non-equilibrium configurations),
then this may be acceptable.

The ultimate test (recommended by – among others – M. Donahue and the
nmag team) is the following:

	cell size dependence test

The best way to check whether the cell size has been chosen small
enough, is to perform a series of simulations with increasing cell
size. Suppose we are simulating Permalloy (Ni80Fe20 with Ms=8e5 A/m,
A=1.3e-11) and the Exchange length l1 is about 5nm. Suppose further
we would like to use a cell size of 5nm for our simulations.

We should then carry out the same simulation with smaller cell
sizes, for example, 4nm, 3nm, 2nm, 1nm. Now we need to study
(typically plot) some (scalar) entity of the simulation (such as
the coercive field, or the remanence magnetisation) as a function of
the cell size.

Ideally, this entity should converge towards a constant value when
we reduce the simulation cell size below a critical cell size. This
critical cell size is the maximum cell size that should be used to
carry out the simulations.

Be aware that (i) it is often nearly impossible to carry out these
simulations at smaller cell sizes [because of a lack of
computational power] and (ii) this method is not 100% fool proof
[the observed entity may appear to converge towards a constant but
actually start changing again if the cell size is reduced even
further].

One should therefore treat the suggestions made above as advise on
good practice, but never solely rely on this. Critical examination
of the validity of simulation results is a fundamental part of any
simulation work.

In summary, it is vital to keep the maximum spin angle small to obtain
accurate results. One should always (!) check the value of the spin
angle in the data files. One should also carry out a series of
simulations where the spin angle is reduced from one simulation to the
next while keeping all other parameters and the geometry the
same. This should reveal any changes in the results that depend on the
discretisation length.

11.3.1. Exchange length

There is sometimes confusion about what equation should be used to
compute the exchange length. In this document, we refer to this
equation for soft materials (where the demagnetisation energy is
driving domain wall formation)

\[l_\mathrm{1} = \sqrt{\frac{2A}{\mu_0 M^2_\mathrm{s}}}\]

and this equation for hard materials (with uniaxial pinning) where the
crystal anisotropy governs domain wall lengths

\[l_2 = \sqrt{\frac{A}{K_1}}\]

If in doubt which of the two equations is the right one, compute both
l1 and l2 and choose the minimum length as the relevant exchange
length for this system.

11.3.2. Further reading

Micheal Donahue and co-workers have published a couple of papers on
the effect of cell size on vortex mobility:

	M. J. Donahue and R. D. McMichael, Physica B, 233, 272-278 (1997) [http://math.nist.gov/~MDonahue/publications.html#Donahue199606A]

	M. J. Donahue and D. G. Porter, Physica B, 343, 177-183 (2004) [http://math.nist.gov/~MDonahue/publications.html#Donahue20030528]

and one which included a section on discretisation-induced Neel wall
collapse

	M. J. Donahue, Journal of Applied Physics, 83, 6491-6493 (1998) [http://math.nist.gov/~MDonahue/publications.html#Donahue199710]

11.4. Micromagnetic packages

The following micromagnetic simulation packages are freely available on the internet:

	`OOMMF`_ (finite differences)

	`Magpar`_ (finite elements)

	|Nmag_url| (finite elements)

These are general purpose packages. Some other (and partly closed
source/commercial packages) are listed at
http://math.nist.gov/oommf/otherlinks.html.

11.5. Summary

The most important points in short:

	choose a small discretisation length so that the spin angle stays
well below 30 degrees.

	if you want to simulate thin films (or other geometries with a lot
of surface [nodes]), with finite elements, consider how much memory
you would need for the boundary element matrix (best to do this
before you start creating the mesh).

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Nmag 0.2 documentation

12. Acknowledgements

This work has been financially supported by the Engineering and
Physical Science Research Council (EPSRC) [http://www.epsrc.ac.uk]
(GR/T09156/01,EP/E0400631/1) in the United Kingdom, through funding
from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no 233552, and by the
`University of Southampton`_.

We thank Thomas Schrefl, Wyn Williams, Michael Donahue, Richard
Boardman and Jürgen Zimmermann for useful discussion that have
supported the development of this tool.

Further acknowledgements go to the `Magpar`_ software and its main
author Werner Scholz. Magpar has provided a finite element
implementation of micromagnetics that has proved very useful in the
development of nmag. Special thanks to Werner Scholz who has discussed
various numerical problems with the nmag team in great depth.

We further thank the beta users for their helpful feedback, in
particular Michael Martens, David Vokoun, Niels Wiese, Gabriel David
Chaves O’Flynn and David Gonzales at the very early stages of the
project.

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Nmag 0.2 documentation

Index

 Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

 _images/m-begin.png
m_Py<> (Z component)
0.00 0.143 0.286 0.429 0.571 0714 0.857 1.00

_images/vis2.png

_images/netgen-mesh.png
4.00

-4.00
~4.00

4004.00

_images/ellipsoid_mesh.png
w7 Sop

_images/random-noise-netgen-mesh.png
m_NdFeB<> (X component)
0270 -0.164 -0.0572 0.0494 0.156 0263 0.369 0.476

_images/bar_final_demag.png
H_demag<A/m>
0.00 6.81e+04 1.36e+05 2.04e+05 2.72e+05 3.41e+05 4.09e+05 4.77e+05

example_two_materials/oommf-data.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 3.078590e-12 0.998210 0.004699 0.019900 0.998999 -0.001892 0.016507
5.734300e-12 0.997472 0.009188 0.022448 0.998132 -0.003520 0.015702
8.321220e-12 0.997593 0.014117 0.025403 0.997731 -0.005146 0.014937
1.089900e-11 0.997713 0.019724 0.028910 0.997683 -0.006839 0.014216
1.347230e-11 0.997526 0.026111 0.033068 0.997810 -0.008636 0.013554
1.603600e-11 0.997130 0.033373 0.037973 0.997989 -0.010567 0.012952
1.861340e-11 0.996601 0.041738 0.043801 0.998167 -0.012688 0.012399
2.118630e-11 0.995881 0.051354 0.050660 0.998308 -0.015027 0.011897
2.376250e-11 0.994842 0.062476 0.058741 0.998386 -0.017638 0.011450
2.633260e-11 0.993360 0.075310 0.068214 0.998389 -0.020568 0.011066
2.890120e-11 0.991292 0.090153 0.079324 0.998320 -0.023884 0.010756
3.147310e-11 0.988439 0.107361 0.092365 0.998195 -0.027668 0.010530
3.405010e-11 0.984513 0.127320 0.107667 0.998028 -0.032015 0.010404
3.662540e-11 0.979136 0.150380 0.125546 0.997824 -0.037016 0.010392
3.919510e-11 0.971800 0.176909 0.146357 0.997575 -0.042780 0.010512
4.177210e-11 0.961768 0.207459 0.170636 0.997259 -0.049474 0.010785
4.434870e-11 0.948141 0.242323 0.198784 0.996845 -0.057238 0.011232
4.693250e-11 0.929671 0.281878 0.231361 0.996290 -0.066275 0.011880
4.950900e-11 0.904958 0.325934 0.268624 0.995543 -0.076732 0.012753
5.208720e-11 0.872118 0.374273 0.311037 0.994533 -0.088852 0.013881
5.466520e-11 0.829071 0.425909 0.358776 0.993174 -0.102851 0.015293
5.723590e-11 0.773801 0.478871 0.411631 0.991362 -0.118901 0.017007
5.980890e-11 0.704181 0.530434 0.469377 0.988957 -0.137253 0.019043
6.236970e-11 0.619499 0.576188 0.530819 0.985816 -0.157934 0.021377
6.492310e-11 0.520028 0.611098 0.594691 0.981767 -0.181011 0.023961
6.748530e-11 0.407492 0.629637 0.659570 0.976605 -0.206562 0.026711
7.003420e-11 0.287759 0.626459 0.722694 0.970219 -0.234143 0.029434
7.259180e-11 0.167105 0.598123 0.782233 0.962451 -0.263611 0.031905
7.513710e-11 0.055292 0.544456 0.835509 0.953334 -0.294223 0.033781
7.768340e-11 -0.039574 0.468503 0.881180 0.942885 -0.325573 0.034686
8.022970e-11 -0.110477 0.376749 0.918346 0.931232 -0.357100 0.034189
8.276310e-11 -0.153471 0.278263 0.946834 0.918616 -0.388164 0.031875
8.530160e-11 -0.168882 0.181226 0.967522 0.905130 -0.418613 0.027362
8.784100e-11 -0.159702 0.093515 0.981429 0.890951 -0.448116 0.020381
9.037750e-11 -0.131290 0.020792 0.989837 0.876216 -0.476435 0.010821
9.291900e-11 -0.089876 -0.034107 0.994084 0.860954 -0.503526 -0.001311
9.545460e-11 -0.041936 -0.070253 0.995364 0.845269 -0.529187 -0.015770
9.799050e-11 0.007104 -0.088950 0.994729 0.829138 -0.553443 -0.032267
1.005270e-10 0.052903 -0.092607 0.993015 0.812556 -0.576297 -0.050406
1.030610e-10 0.092330 -0.084348 0.990868 0.795541 -0.597746 -0.069708
1.056030e-10 0.123731 -0.067455 0.988739 0.777990 -0.617962 -0.089819
1.081600e-10 0.146327 -0.045039 0.986928 0.759825 -0.637085 -0.110381
1.107180e-10 0.160038 -0.020109 0.985623 0.741111 -0.655123 -0.130912
1.132820e-10 0.165644 0.004929 0.984888 0.721787 -0.672234 -0.151138
1.158460e-10 0.164342 0.028143 0.984713 0.701860 -0.688512 -0.170792
1.184100e-10 0.157608 0.048225 0.985032 0.681308 -0.704067 -0.189721
1.209740e-10 0.146994 0.064409 0.985743 0.660113 -0.718987 -0.207843
1.235380e-10 0.133993 0.076407 0.986733 0.638268 -0.733332 -0.225140
1.261010e-10 0.119938 0.084322 0.987892 0.615776 -0.747126 -0.241640
1.286650e-10 0.105934 0.088553 0.989118 0.592654 -0.760366 -0.257407
1.312280e-10 0.092824 0.089697 0.990327 0.568931 -0.773023 -0.272529
1.337910e-10 0.081180 0.088457 0.991458 0.544649 -0.785049 -0.287103
1.363540e-10 0.071321 0.085561 0.992467 0.519862 -0.796382 -0.301229
1.389160e-10 0.063339 0.081700 0.993332 0.494632 -0.806960 -0.315000
1.414790e-10 0.057151 0.077474 0.994044 0.469027 -0.816718 -0.328497
1.440420e-10 0.052539 0.073369 0.994608 0.443118 -0.825600 -0.341789
1.466060e-10 0.049206 0.069736 0.995039 0.416971 -0.833561 -0.354927
1.491690e-10 0.046818 0.066802 0.995355 0.390663 -0.840564 -0.367941
1.517320e-10 0.045041 0.064672 0.995576 0.364259 -0.846588 -0.380849
1.542960e-10 0.043567 0.063351 0.995726 0.337812 -0.851626 -0.393659
1.568590e-10 0.042141 0.062771 0.995824 0.311379 -0.855678 -0.406363
1.594230e-10 0.040562 0.062809 0.995886 0.285004 -0.858755 -0.418948
1.619860e-10 0.038696 0.063315 0.995928 0.258728 -0.860875 -0.431394
1.645500e-10 0.036464 0.064128 0.995959 0.232583 -0.862061 -0.443684
1.671130e-10 0.033840 0.065096 0.995988 0.206600 -0.862339 -0.455796
1.696770e-10 0.030843 0.066082 0.996020 0.180801 -0.861736 -0.467712
1.722400e-10 0.027517 0.066977 0.996056 0.155211 -0.860278 -0.479417
1.748040e-10 0.023931 0.067700 0.996099 0.129849 -0.857993 -0.490899
1.773680e-10 0.020161 0.068198 0.996148 0.104738 -0.854904 -0.502150
1.799310e-10 0.016283 0.068446 0.996201 0.079893 -0.851034 -0.513168
1.824950e-10 0.012371 0.068439 0.996257 0.055338 -0.846404 -0.523949
1.850590e-10 0.008486 0.068193 0.996314 0.031093 -0.841035 -0.534498
1.876230e-10 0.004677 0.067734 0.996370 0.007178 -0.834945 -0.544816
1.901860e-10 0.000979 0.067094 0.996423 -0.016384 -0.828152 -0.554909
1.927500e-10 -0.002584 0.066311 0.996472 -0.039573 -0.820674 -0.564784
1.953140e-10 -0.006002 0.065420 0.996516 -0.062368 -0.812530 -0.574447
1.978770e-10 -0.009273 0.064454 0.996553 -0.084746 -0.803739 -0.583902
2.004410e-10 -0.012404 0.063437 0.996584 -0.106689 -0.794319 -0.593157
2.030050e-10 -0.015405 0.062392 0.996608 -0.128175 -0.784292 -0.602216
2.055680e-10 -0.018289 0.061333 0.996625 -0.149187 -0.773679 -0.611082
2.081320e-10 -0.021070 0.060268 0.996634 -0.169706 -0.762503 -0.619758
2.106950e-10 -0.023761 0.059202 0.996637 -0.189716 -0.750787 -0.628249
2.132580e-10 -0.026373 0.058133 0.996634 -0.209203 -0.738555 -0.636554
2.158220e-10 -0.028914 0.057059 0.996626 -0.228153 -0.725832 -0.644678
2.183850e-10 -0.031389 0.055977 0.996612 -0.246552 -0.712643 -0.652620
2.209480e-10 -0.033803 0.054879 0.996594 -0.264391 -0.699015 -0.660384
2.235120e-10 -0.036156 0.053763 0.996572 -0.281659 -0.684971 -0.667970
2.260750e-10 -0.038446 0.052622 0.996547 -0.298347 -0.670539 -0.675380
2.286380e-10 -0.040671 0.051454 0.996520 -0.314448 -0.655744 -0.682618
2.312010e-10 -0.042828 0.050258 0.996490 -0.329954 -0.640612 -0.689684
2.337640e-10 -0.044912 0.049031 0.996460 -0.344860 -0.625167 -0.696584
2.363270e-10 -0.046919 0.047776 0.996428 -0.359160 -0.609434 -0.703318
2.388900e-10 -0.048847 0.046493 0.996396 -0.372852 -0.593439 -0.709892
2.414530e-10 -0.050691 0.045185 0.996364 -0.385931 -0.577205 -0.716309
2.440160e-10 -0.052450 0.043855 0.996333 -0.398395 -0.560756 -0.722572
2.465790e-10 -0.054122 0.042506 0.996302 -0.410242 -0.544116 -0.728687
2.491410e-10 -0.055705 0.041141 0.996272 -0.421473 -0.527308 -0.734657
2.517040e-10 -0.057200 0.039765 0.996243 -0.432086 -0.510354 -0.740486
2.542670e-10 -0.058607 0.038379 0.996216 -0.442084 -0.493276 -0.746180
2.568300e-10 -0.059926 0.036987 0.996190 -0.451466 -0.476096 -0.751742
2.593930e-10 -0.061159 0.035591 0.996166 -0.460237 -0.458835 -0.757176
2.619550e-10 -0.062306 0.034195 0.996144 -0.468399 -0.441515 -0.762488
2.645180e-10 -0.063369 0.032798 0.996124 -0.475957 -0.424154 -0.767681
2.670810e-10 -0.064349 0.031404 0.996107 -0.482914 -0.406773 -0.772759
2.696430e-10 -0.065248 0.030013 0.996091 -0.489276 -0.389391 -0.777727
2.722060e-10 -0.066067 0.028627 0.996078 -0.495049 -0.372025 -0.782588
2.747680e-10 -0.066807 0.027247 0.996068 -0.500241 -0.354695 -0.787346
2.773310e-10 -0.067469 0.025874 0.996060 -0.504857 -0.337417 -0.792004
2.798940e-10 -0.068054 0.024508 0.996055 -0.508906 -0.320208 -0.796567
2.824570e-10 -0.068565 0.023151 0.996052 -0.512396 -0.303080 -0.801038
2.850200e-10 -0.069001 0.021804 0.996053 -0.515336 -0.286052 -0.805419
2.875830e-10 -0.069364 0.020468 0.996056 -0.517734 -0.269139 -0.809714
2.901470e-10 -0.069655 0.019143 0.996062 -0.519600 -0.252356 -0.813925
2.927100e-10 -0.069876 0.017830 0.996071 -0.520944 -0.235717 -0.818056
2.952730e-10 -0.070027 0.016531 0.996083 -0.521776 -0.219234 -0.822107
2.978360e-10 -0.070110 0.015247 0.996098 -0.522106 -0.202921 -0.826083
3.003990e-10 -0.070126 0.013978 0.996115 -0.521945 -0.186789 -0.829984
3.029630e-10 -0.070076 0.012725 0.996135 -0.521304 -0.170849 -0.833813
3.055260e-10 -0.069963 0.011490 0.996159 -0.520195 -0.155114 -0.837573
3.080890e-10 -0.069788 0.010272 0.996184 -0.518628 -0.139593 -0.841264
3.106520e-10 -0.069551 0.009073 0.996212 -0.516616 -0.124296 -0.844889
3.132150e-10 -0.069256 0.007893 0.996243 -0.514170 -0.109234 -0.848448
3.157790e-10 -0.068903 0.006734 0.996276 -0.511302 -0.094415 -0.851944
3.183420e-10 -0.068494 0.005595 0.996311 -0.508025 -0.079849 -0.855377
3.209050e-10 -0.068031 0.004478 0.996349 -0.504350 -0.065542 -0.858748
3.234680e-10 -0.067515 0.003383 0.996388 -0.500290 -0.051505 -0.862059
3.260310e-10 -0.066949 0.002310 0.996429 -0.495857 -0.037743 -0.865311
3.285940e-10 -0.066333 0.001260 0.996472 -0.491064 -0.024264 -0.868504
3.311570e-10 -0.065669 0.000233 0.996517 -0.485924 -0.011074 -0.871639
3.337200e-10 -0.064960 -0.000770 0.996563 -0.480449 0.001820 -0.874717
3.362830e-10 -0.064207 -0.001749 0.996611 -0.474652 0.014413 -0.877739
3.388460e-10 -0.063411 -0.002703 0.996659 -0.468546 0.026698 -0.880705
3.414090e-10 -0.062575 -0.003632 0.996709 -0.462143 0.038672 -0.883615
3.439720e-10 -0.061699 -0.004536 0.996760 -0.455456 0.050329 -0.886471
3.465350e-10 -0.060787 -0.005415 0.996812 -0.448499 0.061665 -0.889272
3.490980e-10 -0.059838 -0.006267 0.996864 -0.441284 0.072675 -0.892020
3.516610e-10 -0.058856 -0.007094 0.996917 -0.433824 0.083357 -0.894714
3.542240e-10 -0.057841 -0.007894 0.996970 -0.426132 0.093708 -0.897356
3.567870e-10 -0.056796 -0.008668 0.997023 -0.418221 0.103724 -0.899945
3.593500e-10 -0.055723 -0.009416 0.997077 -0.410103 0.113403 -0.902481
3.619130e-10 -0.054622 -0.010136 0.997131 -0.401791 0.122743 -0.904966
3.644760e-10 -0.053495 -0.010830 0.997185 -0.393299 0.131742 -0.907400
3.670390e-10 -0.052345 -0.011496 0.997238 -0.384637 0.140399 -0.909783
3.696010e-10 -0.051173 -0.012135 0.997291 -0.375820 0.148714 -0.912115
3.721640e-10 -0.049981 -0.012748 0.997344 -0.366859 0.156685 -0.914398
3.747270e-10 -0.048770 -0.013333 0.997396 -0.357767 0.164312 -0.916631
3.772900e-10 -0.047542 -0.013891 0.997447 -0.348556 0.171596 -0.918814
3.798530e-10 -0.046298 -0.014422 0.997498 -0.339237 0.178536 -0.920950
3.824150e-10 -0.045041 -0.014925 0.997548 -0.329823 0.185135 -0.923037
3.849780e-10 -0.043772 -0.015402 0.997597 -0.320326 0.191392 -0.925076
3.875410e-10 -0.042492 -0.015853 0.997646 -0.310757 0.197310 -0.927068
3.901030e-10 -0.041202 -0.016276 0.997693 -0.301127 0.202891 -0.929013
3.926660e-10 -0.039906 -0.016674 0.997739 -0.291448 0.208135 -0.930913
3.952290e-10 -0.038603 -0.017044 0.997784 -0.281730 0.213047 -0.932766
3.977910e-10 -0.037295 -0.017389 0.997827 -0.271985 0.217629 -0.934575
4.003540e-10 -0.035985 -0.017709 0.997870 -0.262223 0.221884 -0.936340
4.029170e-10 -0.034672 -0.018002 0.997911 -0.252453 0.225815 -0.938061
4.054800e-10 -0.033359 -0.018271 0.997950 -0.242687 0.229426 -0.939739
4.080430e-10 -0.032047 -0.018515 0.997989 -0.232935 0.232722 -0.941374
4.106060e-10 -0.030738 -0.018734 0.998026 -0.223205 0.235705 -0.942967
4.131690e-10 -0.029432 -0.018929 0.998061 -0.213509 0.238381 -0.944519
4.157320e-10 -0.028131 -0.019100 0.998095 -0.203854 0.240754 -0.946030
4.182950e-10 -0.026836 -0.019248 0.998128 -0.194250 0.242829 -0.947502
4.208580e-10 -0.025549 -0.019373 0.998159 -0.184705 0.244612 -0.948934
4.234210e-10 -0.024270 -0.019476 0.998189 -0.175228 0.246107 -0.950328
4.259840e-10 -0.023000 -0.019556 0.998218 -0.165826 0.247321 -0.951683
4.285470e-10 -0.021741 -0.019615 0.998245 -0.156508 0.248259 -0.953002
4.311090e-10 -0.020494 -0.019653 0.998270 -0.147281 0.248926 -0.954284
4.336720e-10 -0.019259 -0.019670 0.998294 -0.138152 0.249330 -0.955531
4.362350e-10 -0.018038 -0.019667 0.998317 -0.129128 0.249476 -0.956742
4.387980e-10 -0.016832 -0.019645 0.998339 -0.120216 0.249371 -0.957919
4.413610e-10 -0.015641 -0.019603 0.998359 -0.111421 0.249021 -0.959062
4.439230e-10 -0.014466 -0.019543 0.998378 -0.102751 0.248433 -0.960173
4.464860e-10 -0.013308 -0.019465 0.998395 -0.094210 0.247613 -0.961251
4.490490e-10 -0.012168 -0.019369 0.998412 -0.085804 0.246569 -0.962298
4.516120e-10 -0.011046 -0.019257 0.998427 -0.077538 0.245307 -0.963315
4.541750e-10 -0.009943 -0.019128 0.998441 -0.069418 0.243833 -0.964301
4.567380e-10 -0.008861 -0.018983 0.998454 -0.061447 0.242157 -0.965258
4.593010e-10 -0.007798 -0.018823 0.998466 -0.053630 0.240283 -0.966186
4.618640e-10 -0.006757 -0.018649 0.998477 -0.045971 0.238220 -0.967087
4.644260e-10 -0.005737 -0.018461 0.998486 -0.038474 0.235974 -0.967960
4.669890e-10 -0.004739 -0.018259 0.998495 -0.031142 0.233552 -0.968807
4.695520e-10 -0.003764 -0.018044 0.998504 -0.023979 0.230963 -0.969628
4.721150e-10 -0.002811 -0.017817 0.998511 -0.016987 0.228212 -0.970425
4.746780e-10 -0.001882 -0.017578 0.998517 -0.010168 0.225308 -0.971196
4.772410e-10 -0.000976 -0.017327 0.998523 -0.003526 0.222256 -0.971944
4.798030e-10 -0.000093 -0.017067 0.998528 0.002938 0.219065 -0.972669
4.823660e-10 0.000765 -0.016796 0.998532 0.009221 0.215741 -0.973372
4.849290e-10 0.001598 -0.016515 0.998536 0.015323 0.212292 -0.974052
4.874920e-10 0.002407 -0.016226 0.998539 0.021242 0.208723 -0.974712
4.900540e-10 0.003192 -0.015928 0.998542 0.026976 0.205043 -0.975351
4.926170e-10 0.003951 -0.015622 0.998544 0.032526 0.201258 -0.975970
4.951800e-10 0.004686 -0.015309 0.998545 0.037889 0.197375 -0.976570
4.977420e-10 0.005396 -0.014989 0.998547 0.043067 0.193400 -0.977152
5.003050e-10 0.006080 -0.014663 0.998548 0.048058 0.189340 -0.977715
5.028680e-10 0.006740 -0.014331 0.998548 0.052862 0.185201 -0.978260
5.054300e-10 0.007374 -0.013994 0.998549 0.057480 0.180990 -0.978789
5.079930e-10 0.007984 -0.013651 0.998549 0.061912 0.176714 -0.979302
5.105560e-10 0.008568 -0.013305 0.998549 0.066159 0.172378 -0.979798
5.131180e-10 0.009128 -0.012955 0.998548 0.070222 0.167988 -0.980279
5.156810e-10 0.009663 -0.012601 0.998548 0.074100 0.163551 -0.980745
5.182430e-10 0.010173 -0.012245 0.998547 0.077797 0.159072 -0.981197
5.208060e-10 0.010659 -0.011886 0.998547 0.081311 0.154557 -0.981635
5.233690e-10 0.011120 -0.011525 0.998546 0.084646 0.150012 -0.982060
5.259310e-10 0.011558 -0.011162 0.998545 0.087803 0.145442 -0.982472
5.284940e-10 0.011971 -0.010798 0.998544 0.090783 0.140852 -0.982871
5.310560e-10 0.012361 -0.010434 0.998543 0.093589 0.136249 -0.983259
5.336190e-10 0.012728 -0.010069 0.998542 0.096221 0.131636 -0.983634
5.361810e-10 0.013071 -0.009704 0.998542 0.098683 0.127019 -0.983999
5.387440e-10 0.013392 -0.009339 0.998541 0.100977 0.122402 -0.984352
5.413060e-10 0.013690 -0.008976 0.998540 0.103104 0.117791 -0.984696
5.438690e-10 0.013966 -0.008613 0.998540 0.105068 0.113189 -0.985029
5.464310e-10 0.014220 -0.008252 0.998539 0.106871 0.108602 -0.985352
5.489940e-10 0.014453 -0.007892 0.998539 0.108516 0.104034 -0.985666
5.515560e-10 0.014664 -0.007535 0.998538 0.110004 0.099488 -0.985972
5.541190e-10 0.014855 -0.007180 0.998538 0.111340 0.094968 -0.986268
5.566820e-10 0.015025 -0.006828 0.998538 0.112526 0.090480 -0.986556
5.592440e-10 0.015176 -0.006478 0.998538 0.113565 0.086025 -0.986836
5.618070e-10 0.015307 -0.006132 0.998539 0.114461 0.081608 -0.987108
5.643700e-10 0.015418 -0.005789 0.998539 0.115215 0.077233 -0.987373
5.669320e-10 0.015511 -0.005451 0.998539 0.115832 0.072902 -0.987630
5.694950e-10 0.015586 -0.005116 0.998540 0.116314 0.068618 -0.987880
5.720580e-10 0.015643 -0.004785 0.998541 0.116665 0.064386 -0.988123
5.746210e-10 0.015682 -0.004459 0.998542 0.116888 0.060207 -0.988360
5.771830e-10 0.015705 -0.004137 0.998543 0.116986 0.056084 -0.988591
5.797460e-10 0.015711 -0.003821 0.998544 0.116964 0.052021 -0.988815
5.823090e-10 0.015700 -0.003509 0.998545 0.116823 0.048019 -0.989034
5.848710e-10 0.015675 -0.003202 0.998547 0.116569 0.044081 -0.989247
5.874340e-10 0.015634 -0.002901 0.998548 0.116203 0.040209 -0.989454
5.899970e-10 0.015578 -0.002606 0.998550 0.115731 0.036405 -0.989656
5.925600e-10 0.015508 -0.002316 0.998552 0.115154 0.032671 -0.989852
5.951220e-10 0.015425 -0.002032 0.998554 0.114477 0.029009 -0.990044
5.976850e-10 0.015328 -0.001754 0.998556 0.113703 0.025421 -0.990231
6.002480e-10 0.015218 -0.001481 0.998558 0.112836 0.021908 -0.990413
6.028100e-10 0.015096 -0.001215 0.998560 0.111879 0.018471 -0.990590
6.053730e-10 0.014963 -0.000956 0.998562 0.110835 0.015113 -0.990763
6.079360e-10 0.014817 -0.000702 0.998565 0.109709 0.011833 -0.990931
6.104980e-10 0.014661 -0.000455 0.998567 0.108503 0.008634 -0.991096
6.130610e-10 0.014495 -0.000215 0.998570 0.107221 0.005517 -0.991256
6.156240e-10 0.014318 0.000019 0.998572 0.105866 0.002481 -0.991412
6.181870e-10 0.014132 0.000246 0.998575 0.104443 -0.000471 -0.991565
6.207490e-10 0.013937 0.000467 0.998577 0.102954 -0.003340 -0.991714
6.233120e-10 0.013733 0.000681 0.998580 0.101402 -0.006124 -0.991858
6.258750e-10 0.013521 0.000888 0.998583 0.099791 -0.008824 -0.992000
6.284370e-10 0.013301 0.001088 0.998586 0.098125 -0.011439 -0.992138
6.310000e-10 0.013074 0.001282 0.998588 0.096406 -0.013968 -0.992272
6.335630e-10 0.012840 0.001469 0.998591 0.094637 -0.016412 -0.992403
6.361260e-10 0.012600 0.001649 0.998594 0.092823 -0.018770 -0.992531
6.386880e-10 0.012353 0.001823 0.998597 0.090966 -0.021043 -0.992656
6.412510e-10 0.012101 0.001989 0.998599 0.089069 -0.023230 -0.992777
6.438140e-10 0.011844 0.002149 0.998602 0.087135 -0.025332 -0.992896
6.463760e-10 0.011583 0.002302 0.998605 0.085167 -0.027349 -0.993012
6.489390e-10 0.011316 0.002449 0.998608 0.083168 -0.029281 -0.993124
6.515020e-10 0.011046 0.002589 0.998610 0.081142 -0.031129 -0.993234
6.540640e-10 0.010772 0.002722 0.998613 0.079090 -0.032893 -0.993341
6.566270e-10 0.010496 0.002849 0.998615 0.077016 -0.034573 -0.993445
6.591900e-10 0.010216 0.002970 0.998618 0.074923 -0.036172 -0.993547
6.617520e-10 0.009934 0.003084 0.998620 0.072813 -0.037688 -0.993646
6.643150e-10 0.009649 0.003191 0.998623 0.070688 -0.039123 -0.993742
6.668780e-10 0.009363 0.003292 0.998625 0.068552 -0.040478 -0.993836
6.694400e-10 0.009076 0.003388 0.998628 0.066406 -0.041753 -0.993928
6.720030e-10 0.008787 0.003476 0.998630 0.064254 -0.042950 -0.994017
6.745650e-10 0.008498 0.003559 0.998632 0.062098 -0.044070 -0.994104
6.771280e-10 0.008208 0.003636 0.998634 0.059939 -0.045113 -0.994188
6.796910e-10 0.007918 0.003707 0.998636 0.057781 -0.046080 -0.994270
6.822530e-10 0.007628 0.003773 0.998638 0.055625 -0.046974 -0.994350
6.848160e-10 0.007339 0.003832 0.998640 0.053473 -0.047794 -0.994428
6.873790e-10 0.007050 0.003886 0.998642 0.051328 -0.048543 -0.994504
6.899410e-10 0.006763 0.003935 0.998644 0.049192 -0.049221 -0.994577
6.925040e-10 0.006476 0.003978 0.998646 0.047066 -0.049830 -0.994649
6.950670e-10 0.006192 0.004016 0.998647 0.044953 -0.050370 -0.994718
6.976290e-10 0.005909 0.004049 0.998649 0.042854 -0.050845 -0.994786
7.001920e-10 0.005628 0.004076 0.998650 0.040771 -0.051254 -0.994852
7.027550e-10 0.005349 0.004099 0.998652 0.038705 -0.051600 -0.994915
7.053170e-10 0.005073 0.004117 0.998653 0.036659 -0.051883 -0.994977
7.078800e-10 0.004799 0.004130 0.998654 0.034633 -0.052106 -0.995038
7.104430e-10 0.004528 0.004139 0.998656 0.032630 -0.052269 -0.995096
7.130060e-10 0.004261 0.004143 0.998657 0.030650 -0.052374 -0.995153
7.155680e-10 0.003996 0.004143 0.998658 0.028695 -0.052423 -0.995208
7.181310e-10 0.003735 0.004139 0.998659 0.026767 -0.052418 -0.995261
7.206940e-10 0.003478 0.004130 0.998660 0.024866 -0.052359 -0.995313
7.232560e-10 0.003224 0.004118 0.998661 0.022993 -0.052249 -0.995364
7.258190e-10 0.002975 0.004102 0.998662 0.021151 -0.052089 -0.995412
7.283820e-10 0.002729 0.004082 0.998662 0.019339 -0.051880 -0.995460
7.309450e-10 0.002488 0.004058 0.998663 0.017559 -0.051624 -0.995506
7.335070e-10 0.002251 0.004031 0.998664 0.015811 -0.051323 -0.995550
7.360700e-10 0.002018 0.004001 0.998664 0.014098 -0.050979 -0.995593
7.386330e-10 0.001790 0.003968 0.998665 0.012418 -0.050592 -0.995635
7.411960e-10 0.001566 0.003931 0.998666 0.010773 -0.050165 -0.995676
7.437590e-10 0.001348 0.003891 0.998666 0.009165 -0.049699 -0.995715
7.463210e-10 0.001134 0.003849 0.998666 0.007592 -0.049196 -0.995753
7.488840e-10 0.000925 0.003804 0.998667 0.006057 -0.048656 -0.995790
7.514470e-10 0.000721 0.003756 0.998667 0.004559 -0.048083 -0.995825
7.540100e-10 0.000522 0.003706 0.998667 0.003099 -0.047477 -0.995860
7.565720e-10 0.000328 0.003653 0.998668 0.001677 -0.046840 -0.995893
7.591350e-10 0.000140 0.003599 0.998668 0.000294 -0.046173 -0.995926
7.616980e-10 -0.000044 0.003542 0.998668 -0.001050 -0.045478 -0.995957
7.642610e-10 -0.000222 0.003483 0.998668 -0.002355 -0.044757 -0.995988
7.668230e-10 -0.000395 0.003422 0.998669 -0.003620 -0.044011 -0.996017
7.693860e-10 -0.000562 0.003360 0.998669 -0.004846 -0.043241 -0.996046
7.719490e-10 -0.000724 0.003296 0.998669 -0.006031 -0.042449 -0.996073
7.745120e-10 -0.000881 0.003230 0.998669 -0.007177 -0.041636 -0.996100
7.770740e-10 -0.001033 0.003163 0.998669 -0.008284 -0.040804 -0.996126
7.796370e-10 -0.001179 0.003094 0.998669 -0.009350 -0.039954 -0.996151
7.822000e-10 -0.001319 0.003025 0.998669 -0.010376 -0.039088 -0.996175
7.847620e-10 -0.001455 0.002954 0.998669 -0.011363 -0.038206 -0.996199
7.873250e-10 -0.001585 0.002882 0.998669 -0.012310 -0.037311 -0.996221
7.898880e-10 -0.001710 0.002810 0.998669 -0.013218 -0.036403 -0.996243
7.924500e-10 -0.001829 0.002736 0.998669 -0.014086 -0.035484 -0.996265
7.950130e-10 -0.001943 0.002662 0.998669 -0.014915 -0.034555 -0.996285
7.975750e-10 -0.002052 0.002588 0.998669 -0.015706 -0.033617 -0.996305
8.001380e-10 -0.002156 0.002512 0.998669 -0.016458 -0.032671 -0.996325
8.027010e-10 -0.002255 0.002437 0.998669 -0.017172 -0.031720 -0.996343
8.052630e-10 -0.002348 0.002361 0.998669 -0.017848 -0.030763 -0.996362
8.078260e-10 -0.002437 0.002285 0.998669 -0.018487 -0.029802 -0.996379
8.103880e-10 -0.002520 0.002208 0.998669 -0.019088 -0.028837 -0.996396
8.129510e-10 -0.002599 0.002132 0.998669 -0.019654 -0.027871 -0.996413
8.155140e-10 -0.002673 0.002055 0.998669 -0.020183 -0.026904 -0.996429
8.180760e-10 -0.002742 0.001979 0.998669 -0.020676 -0.025938 -0.996445
8.206390e-10 -0.002806 0.001903 0.998669 -0.021135 -0.024972 -0.996460
8.232010e-10 -0.002865 0.001827 0.998669 -0.021559 -0.024008 -0.996474
8.257640e-10 -0.002920 0.001751 0.998669 -0.021949 -0.023047 -0.996489
8.283260e-10 -0.002970 0.001676 0.998669 -0.022305 -0.022090 -0.996502
8.308890e-10 -0.003016 0.001601 0.998669 -0.022629 -0.021138 -0.996516
8.334520e-10 -0.003058 0.001527 0.998669 -0.022920 -0.020192 -0.996529
8.360140e-10 -0.003095 0.001453 0.998669 -0.023180 -0.019251 -0.996541
8.385770e-10 -0.003128 0.001380 0.998669 -0.023409 -0.018318 -0.996554
8.411400e-10 -0.003157 0.001307 0.998669 -0.023607 -0.017393 -0.996566
8.437020e-10 -0.003181 0.001235 0.998669 -0.023776 -0.016477 -0.996577
8.462650e-10 -0.003202 0.001164 0.998669 -0.023916 -0.015569 -0.996588
8.488270e-10 -0.003219 0.001094 0.998669 -0.024027 -0.014672 -0.996599
8.513900e-10 -0.003233 0.001025 0.998669 -0.024111 -0.013785 -0.996610
8.539530e-10 -0.003242 0.000957 0.998669 -0.024168 -0.012910 -0.996620
8.565150e-10 -0.003248 0.000889 0.998669 -0.024198 -0.012046 -0.996630
8.590780e-10 -0.003251 0.000823 0.998669 -0.024204 -0.011194 -0.996640
8.616410e-10 -0.003250 0.000758 0.998669 -0.024184 -0.010356 -0.996650
8.642030e-10 -0.003246 0.000693 0.998669 -0.024140 -0.009530 -0.996659
8.667660e-10 -0.003238 0.000630 0.998669 -0.024073 -0.008719 -0.996668
8.693290e-10 -0.003228 0.000568 0.998669 -0.023984 -0.007921 -0.996677
8.718910e-10 -0.003215 0.000508 0.998669 -0.023872 -0.007139 -0.996685
8.744540e-10 -0.003198 0.000448 0.998669 -0.023739 -0.006371 -0.996694
8.770170e-10 -0.003179 0.000390 0.998669 -0.023586 -0.005618 -0.996702
8.795790e-10 -0.003158 0.000333 0.998669 -0.023414 -0.004882 -0.996710
8.821420e-10 -0.003133 0.000277 0.998670 -0.023222 -0.004161 -0.996717
8.847050e-10 -0.003106 0.000222 0.998670 -0.023012 -0.003457 -0.996725
8.872670e-10 -0.003077 0.000169 0.998670 -0.022785 -0.002769 -0.996732
8.898300e-10 -0.003045 0.000117 0.998670 -0.022541 -0.002097 -0.996739
8.923930e-10 -0.003012 0.000067 0.998670 -0.022281 -0.001443 -0.996746
8.949560e-10 -0.002976 0.000018 0.998670 -0.022006 -0.000806 -0.996753
8.975180e-10 -0.002938 -0.000030 0.998670 -0.021716 -0.000186 -0.996760
9.000810e-10 -0.002898 -0.000076 0.998670 -0.021412 0.000416 -0.996766
9.026440e-10 -0.002857 -0.000121 0.998670 -0.021095 0.001001 -0.996772
9.052060e-10 -0.002813 -0.000165 0.998671 -0.020766 0.001568 -0.996778
9.077690e-10 -0.002768 -0.000207 0.998671 -0.020425 0.002117 -0.996784
9.103320e-10 -0.002722 -0.000247 0.998671 -0.020073 0.002649 -0.996790
9.128940e-10 -0.002674 -0.000287 0.998671 -0.019710 0.003163 -0.996796
9.154570e-10 -0.002624 -0.000325 0.998671 -0.019337 0.003659 -0.996801
9.180200e-10 -0.002574 -0.000361 0.998671 -0.018956 0.004137 -0.996807
9.205830e-10 -0.002522 -0.000396 0.998671 -0.018566 0.004597 -0.996812
9.231450e-10 -0.002469 -0.000430 0.998671 -0.018168 0.005040 -0.996817
9.257080e-10 -0.002415 -0.000462 0.998672 -0.017763 0.005464 -0.996822
9.282710e-10 -0.002361 -0.000493 0.998672 -0.017352 0.005871 -0.996827
9.308340e-10 -0.002305 -0.000522 0.998672 -0.016934 0.006261 -0.996832
9.333960e-10 -0.002249 -0.000551 0.998672 -0.016512 0.006633 -0.996836
9.359590e-10 -0.002191 -0.000577 0.998672 -0.016084 0.006988 -0.996841
9.385210e-10 -0.002134 -0.000603 0.998672 -0.015652 0.007325 -0.996845
9.410840e-10 -0.002076 -0.000627 0.998672 -0.015217 0.007646 -0.996849
9.436470e-10 -0.002017 -0.000650 0.998672 -0.014778 0.007950 -0.996854
9.462090e-10 -0.001958 -0.000671 0.998672 -0.014337 0.008236 -0.996858
9.487720e-10 -0.001898 -0.000691 0.998673 -0.013894 0.008507 -0.996862
9.513350e-10 -0.001839 -0.000710 0.998673 -0.013449 0.008761 -0.996865
9.538970e-10 -0.001779 -0.000728 0.998673 -0.013004 0.008998 -0.996869
9.564600e-10 -0.001719 -0.000744 0.998673 -0.012557 0.009220 -0.996873
9.590230e-10 -0.001659 -0.000759 0.998673 -0.012111 0.009426 -0.996876
9.615850e-10 -0.001599 -0.000773 0.998673 -0.011665 0.009617 -0.996880
9.641480e-10 -0.001539 -0.000786 0.998673 -0.011220 0.009793 -0.996883
9.667110e-10 -0.001480 -0.000798 0.998673 -0.010776 0.009953 -0.996886
9.692730e-10 -0.001420 -0.000808 0.998673 -0.010333 0.010099 -0.996890
9.718360e-10 -0.001361 -0.000817 0.998673 -0.009893 0.010230 -0.996893
9.743980e-10 -0.001302 -0.000826 0.998673 -0.009455 0.010348 -0.996896
9.769610e-10 -0.001243 -0.000833 0.998673 -0.009020 0.010451 -0.996899
9.795240e-10 -0.001185 -0.000839 0.998673 -0.008589 0.010541 -0.996901
9.820870e-10 -0.001127 -0.000844 0.998674 -0.008160 0.010617 -0.996904
9.846490e-10 -0.001070 -0.000848 0.998674 -0.007736 0.010681 -0.996907
9.872120e-10 -0.001013 -0.000851 0.998674 -0.007316 0.010732 -0.996909
9.897750e-10 -0.000957 -0.000853 0.998674 -0.006900 0.010770 -0.996912
9.923370e-10 -0.000901 -0.000855 0.998674 -0.006489 0.010796 -0.996914
9.949000e-10 -0.000847 -0.000855 0.998674 -0.006084 0.010811 -0.996917
9.974630e-10 -0.000792 -0.000854 0.998674 -0.005683 0.010814 -0.996919
1.000030e-09 -0.000739 -0.000853 0.998674 -0.005289 0.010806 -0.996921
1.002590e-09 -0.000686 -0.000851 0.998674 -0.004900 0.010788 -0.996923
1.005150e-09 -0.000634 -0.000848 0.998674 -0.004517 0.010759 -0.996926
1.007710e-09 -0.000583 -0.000844 0.998674 -0.004140 0.010719 -0.996928
1.010280e-09 -0.000533 -0.000839 0.998674 -0.003770 0.010670 -0.996930
1.012840e-09 -0.000484 -0.000834 0.998674 -0.003407 0.010612 -0.996932
1.015400e-09 -0.000436 -0.000828 0.998674 -0.003050 0.010544 -0.996933
1.017960e-09 -0.000388 -0.000821 0.998674 -0.002701 0.010468 -0.996935
1.020530e-09 -0.000342 -0.000814 0.998674 -0.002358 0.010383 -0.996937
1.023090e-09 -0.000296 -0.000806 0.998674 -0.002023 0.010289 -0.996939
1.025650e-09 -0.000252 -0.000797 0.998674 -0.001696 0.010188 -0.996940
1.028220e-09 -0.000208 -0.000788 0.998674 -0.001376 0.010080 -0.996942
1.030780e-09 -0.000165 -0.000779 0.998674 -0.001064 0.009964 -0.996943
1.033340e-09 -0.000124 -0.000768 0.998674 -0.000760 0.009842 -0.996945
1.035900e-09 -0.000084 -0.000758 0.998674 -0.000463 0.009713 -0.996946
1.038470e-09 -0.000044 -0.000747 0.998674 -0.000175 0.009578 -0.996948
1.041030e-09 -0.000006 -0.000735 0.998674 0.000106 0.009436 -0.996949
1.043590e-09 0.000031 -0.000723 0.998674 0.000378 0.009290 -0.996950
1.046150e-09 0.000067 -0.000711 0.998674 0.000642 0.009138 -0.996952
1.048720e-09 0.000102 -0.000698 0.998674 0.000899 0.008981 -0.996953
1.051280e-09 0.000136 -0.000685 0.998674 0.001146 0.008819 -0.996954
1.053840e-09 0.000169 -0.000671 0.998674 0.001386 0.008653 -0.996955
1.056410e-09 0.000201 -0.000658 0.998674 0.001617 0.008483 -0.996956
1.058970e-09 0.000231 -0.000644 0.998674 0.001841 0.008309 -0.996957
1.061530e-09 0.000261 -0.000629 0.998674 0.002056 0.008131 -0.996958
1.064090e-09 0.000289 -0.000615 0.998674 0.002262 0.007951 -0.996959
1.066660e-09 0.000316 -0.000600 0.998674 0.002461 0.007767 -0.996960
1.069220e-09 0.000342 -0.000585 0.998674 0.002651 0.007581 -0.996961
1.071780e-09 0.000367 -0.000570 0.998674 0.002834 0.007392 -0.996962
1.074340e-09 0.000391 -0.000555 0.998674 0.003008 0.007201 -0.996963
1.076910e-09 0.000414 -0.000540 0.998674 0.003174 0.007008 -0.996964
1.079470e-09 0.000436 -0.000524 0.998674 0.003332 0.006814 -0.996965
1.082030e-09 0.000457 -0.000509 0.998674 0.003482 0.006618 -0.996966
1.084590e-09 0.000477 -0.000493 0.998674 0.003625 0.006421 -0.996966
1.087160e-09 0.000495 -0.000477 0.998674 0.003760 0.006223 -0.996967
1.089720e-09 0.000513 -0.000462 0.998674 0.003887 0.006025 -0.996968
1.092280e-09 0.000529 -0.000446 0.998674 0.004006 0.005825 -0.996969
1.094850e-09 0.000545 -0.000430 0.998674 0.004118 0.005626 -0.996969
1.097410e-09 0.000560 -0.000414 0.998674 0.004223 0.005427 -0.996970
1.099970e-09 0.000573 -0.000399 0.998674 0.004320 0.005227 -0.996971
1.102530e-09 0.000586 -0.000383 0.998674 0.004410 0.005028 -0.996971
1.105100e-09 0.000598 -0.000367 0.998674 0.004494 0.004830 -0.996972
1.107660e-09 0.000608 -0.000352 0.998674 0.004570 0.004632 -0.996973
1.110220e-09 0.000618 -0.000336 0.998674 0.004639 0.004436 -0.996973
1.112780e-09 0.000627 -0.000321 0.998674 0.004702 0.004240 -0.996974
1.115350e-09 0.000635 -0.000306 0.998674 0.004758 0.004045 -0.996974
1.117910e-09 0.000642 -0.000290 0.998674 0.004808 0.003852 -0.996975
1.120470e-09 0.000648 -0.000275 0.998674 0.004851 0.003661 -0.996975
1.123030e-09 0.000654 -0.000261 0.998674 0.004888 0.003471 -0.996976
1.125600e-09 0.000659 -0.000246 0.998674 0.004919 0.003283 -0.996976
1.128160e-09 0.000662 -0.000231 0.998674 0.004945 0.003098 -0.996977
1.130720e-09 0.000665 -0.000217 0.998674 0.004964 0.002914 -0.996977
1.133280e-09 0.000668 -0.000203 0.998674 0.004978 0.002732 -0.996978
1.135850e-09 0.000669 -0.000189 0.998674 0.004986 0.002553 -0.996978
1.138410e-09 0.000670 -0.000175 0.998674 0.004989 0.002377 -0.996978
1.140970e-09 0.000670 -0.000161 0.998674 0.004987 0.002203 -0.996979
1.143540e-09 0.000669 -0.000148 0.998674 0.004980 0.002031 -0.996979
1.146100e-09 0.000668 -0.000135 0.998674 0.004968 0.001863 -0.996980
1.148660e-09 0.000666 -0.000122 0.998674 0.004952 0.001697 -0.996980
1.151220e-09 0.000664 -0.000110 0.998674 0.004930 0.001535 -0.996980
1.153790e-09 0.000661 -0.000097 0.998674 0.004905 0.001375 -0.996981
1.156350e-09 0.000657 -0.000085 0.998674 0.004875 0.001219 -0.996981
1.158910e-09 0.000653 -0.000073 0.998674 0.004841 0.001066 -0.996981
1.161470e-09 0.000648 -0.000062 0.998674 0.004803 0.000916 -0.996982
1.164040e-09 0.000643 -0.000050 0.998674 0.004761 0.000769 -0.996982
1.166600e-09 0.000637 -0.000039 0.998674 0.004715 0.000626 -0.996982
1.169160e-09 0.000630 -0.000028 0.998674 0.004666 0.000486 -0.996983
1.171720e-09 0.000624 -0.000018 0.998674 0.004614 0.000350 -0.996983
1.174290e-09 0.000616 -0.000008 0.998674 0.004559 0.000217 -0.996983
1.176850e-09 0.000609 0.000002 0.998674 0.004500 0.000088 -0.996984
1.179410e-09 0.000601 0.000012 0.998674 0.004438 -0.000037 -0.996984
1.181980e-09 0.000592 0.000021 0.998674 0.004374 -0.000159 -0.996984
1.184540e-09 0.000583 0.000030 0.998674 0.004307 -0.000278 -0.996984
1.187100e-09 0.000574 0.000039 0.998674 0.004238 -0.000392 -0.996985
1.189660e-09 0.000565 0.000048 0.998674 0.004166 -0.000503 -0.996985
1.192230e-09 0.000555 0.000056 0.998674 0.004092 -0.000611 -0.996985
1.194790e-09 0.000545 0.000064 0.998674 0.004016 -0.000714 -0.996985
1.197350e-09 0.000535 0.000071 0.998674 0.003938 -0.000814 -0.996986
1.199910e-09 0.000524 0.000079 0.998674 0.003859 -0.000911 -0.996986
1.202480e-09 0.000513 0.000086 0.998674 0.003777 -0.001003 -0.996986
1.205040e-09 0.000502 0.000093 0.998674 0.003694 -0.001092 -0.996986
1.207600e-09 0.000491 0.000099 0.998674 0.003610 -0.001178 -0.996986
1.210170e-09 0.000480 0.000105 0.998674 0.003524 -0.001259 -0.996987
1.212730e-09 0.000468 0.000111 0.998674 0.003438 -0.001338 -0.996987
1.215290e-09 0.000456 0.000117 0.998674 0.003350 -0.001412 -0.996987
1.217850e-09 0.000444 0.000122 0.998674 0.003261 -0.001483 -0.996987
1.220420e-09 0.000433 0.000127 0.998674 0.003172 -0.001550 -0.996987
1.222980e-09 0.000420 0.000132 0.998674 0.003082 -0.001614 -0.996988
1.225540e-09 0.000408 0.000137 0.998674 0.002991 -0.001675 -0.996988
1.228100e-09 0.000396 0.000141 0.998674 0.002900 -0.001732 -0.996988
1.230670e-09 0.000384 0.000145 0.998674 0.002808 -0.001786 -0.996988
1.233230e-09 0.000371 0.000149 0.998674 0.002716 -0.001836 -0.996988
1.235790e-09 0.000359 0.000152 0.998674 0.002624 -0.001883 -0.996988
1.238350e-09 0.000347 0.000155 0.998674 0.002532 -0.001927 -0.996989
1.240920e-09 0.000334 0.000158 0.998674 0.002440 -0.001967 -0.996989
1.243480e-09 0.000322 0.000161 0.998674 0.002348 -0.002005 -0.996989
1.246040e-09 0.000310 0.000163 0.998674 0.002257 -0.002039 -0.996989
1.248610e-09 0.000297 0.000166 0.998674 0.002165 -0.002070 -0.996989
1.251170e-09 0.000285 0.000168 0.998674 0.002075 -0.002098 -0.996989
1.253730e-09 0.000273 0.000170 0.998674 0.001984 -0.002124 -0.996989
1.256290e-09 0.000261 0.000171 0.998674 0.001894 -0.002146 -0.996990
1.258860e-09 0.000249 0.000172 0.998674 0.001805 -0.002166 -0.996990
1.261420e-09 0.000237 0.000174 0.998674 0.001716 -0.002182 -0.996990
1.263980e-09 0.000225 0.000174 0.998675 0.001629 -0.002197 -0.996990
1.266540e-09 0.000213 0.000175 0.998675 0.001542 -0.002208 -0.996990
1.269110e-09 0.000202 0.000176 0.998674 0.001456 -0.002217 -0.996990
1.271670e-09 0.000190 0.000176 0.998674 0.001371 -0.002223 -0.996990
1.274230e-09 0.000179 0.000176 0.998674 0.001286 -0.002227 -0.996990
1.276790e-09 0.000168 0.000176 0.998674 0.001204 -0.002229 -0.996990
1.279360e-09 0.000157 0.000176 0.998674 0.001122 -0.002228 -0.996991
1.281920e-09 0.000146 0.000176 0.998675 0.001041 -0.002225 -0.996991
1.284480e-09 0.000135 0.000175 0.998675 0.000962 -0.002220 -0.996991
1.287050e-09 0.000124 0.000174 0.998675 0.000884 -0.002213 -0.996991
1.289610e-09 0.000114 0.000173 0.998675 0.000807 -0.002203 -0.996991
1.292170e-09 0.000104 0.000172 0.998675 0.000731 -0.002192 -0.996991
1.294730e-09 0.000094 0.000171 0.998674 0.000657 -0.002179 -0.996991
1.297300e-09 0.000084 0.000170 0.998674 0.000585 -0.002164 -0.996991
1.299860e-09 0.000074 0.000168 0.998674 0.000513 -0.002147 -0.996991
1.302420e-09 0.000065 0.000167 0.998675 0.000444 -0.002128 -0.996991
1.304980e-09 0.000055 0.000165 0.998675 0.000376 -0.002108 -0.996991
1.307550e-09 0.000046 0.000163 0.998674 0.000309 -0.002086 -0.996991
1.310110e-09 0.000038 0.000161 0.998675 0.000244 -0.002063 -0.996991
1.312670e-09 0.000029 0.000159 0.998675 0.000181 -0.002039 -0.996992
1.315240e-09 0.000020 0.000157 0.998675 0.000119 -0.002012 -0.996992
1.317800e-09 0.000012 0.000155 0.998675 0.000059 -0.001985 -0.996992
1.320360e-09 0.000004 0.000152 0.998675 0.000001 -0.001956 -0.996992
1.322920e-09 -0.000003 0.000150 0.998675 -0.000056 -0.001927 -0.996992
1.325490e-09 -0.000011 0.000147 0.998675 -0.000111 -0.001896 -0.996992
1.328050e-09 -0.000018 0.000145 0.998675 -0.000165 -0.001864 -0.996992
1.330610e-09 -0.000025 0.000142 0.998675 -0.000217 -0.001831 -0.996992
1.333170e-09 -0.000032 0.000139 0.998675 -0.000267 -0.001797 -0.996992
1.335740e-09 -0.000039 0.000137 0.998675 -0.000315 -0.001762 -0.996992
1.338300e-09 -0.000045 0.000134 0.998675 -0.000362 -0.001727 -0.996992
1.340860e-09 -0.000051 0.000131 0.998675 -0.000407 -0.001690 -0.996992
1.343430e-09 -0.000057 0.000128 0.998675 -0.000450 -0.001653 -0.996992
1.345990e-09 -0.000063 0.000125 0.998675 -0.000491 -0.001616 -0.996992
1.348550e-09 -0.000068 0.000122 0.998675 -0.000531 -0.001578 -0.996992
1.351110e-09 -0.000074 0.000119 0.998675 -0.000570 -0.001539 -0.996992
1.353680e-09 -0.000079 0.000116 0.998675 -0.000606 -0.001500 -0.996992
1.356240e-09 -0.000084 0.000112 0.998675 -0.000641 -0.001460 -0.996992
1.358800e-09 -0.000088 0.000109 0.998675 -0.000674 -0.001420 -0.996992
1.361360e-09 -0.000093 0.000106 0.998675 -0.000706 -0.001380 -0.996992
1.363930e-09 -0.000097 0.000103 0.998675 -0.000736 -0.001339 -0.996992
1.366490e-09 -0.000101 0.000100 0.998675 -0.000764 -0.001299 -0.996992
1.369050e-09 -0.000104 0.000096 0.998675 -0.000791 -0.001258 -0.996993
1.371610e-09 -0.000108 0.000093 0.998675 -0.000816 -0.001217 -0.996993
1.374180e-09 -0.000111 0.000090 0.998675 -0.000840 -0.001176 -0.996993
1.376740e-09 -0.000114 0.000087 0.998675 -0.000862 -0.001135 -0.996993
1.379300e-09 -0.000117 0.000083 0.998675 -0.000883 -0.001093 -0.996993
1.381860e-09 -0.000120 0.000080 0.998675 -0.000902 -0.001052 -0.996993
1.384430e-09 -0.000122 0.000077 0.998675 -0.000920 -0.001011 -0.996993
1.386990e-09 -0.000125 0.000074 0.998675 -0.000936 -0.000971 -0.996993
1.389550e-09 -0.000127 0.000071 0.998675 -0.000951 -0.000930 -0.996993
1.392120e-09 -0.000129 0.000067 0.998675 -0.000964 -0.000890 -0.996993
1.394680e-09 -0.000130 0.000064 0.998675 -0.000976 -0.000849 -0.996993
1.397240e-09 -0.000132 0.000061 0.998675 -0.000987 -0.000809 -0.996993

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_two_materials/table.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

		Field
		Subfield(s)
		Comment

		m
		m_Py, m_Co
		normalised magnetisation

		M
		M_Py, M_Co
		magnetisation

		H_total
		H_total_Py, H_total_Co
		total effective field

		H_ext
		H_ext
		external (applied) field (only one)

		E_ext
		E_ext_Py, E_ext_Co
		energy density of Py due to external field

		H_anis
		H_anis_Py, H_anis_Co
		crystal anisotropy field

		E_anis
		E_anis_Py, E_anis_Co
		crystal anisotropy energy density

		H_exch
		H_exch_Py, H_exch_Co
		exchange field

		E_exch
		E_exch_Py, E_exch_Co
		exchange energy

		H_demag
		H_demag
		demagnetisation field (only one)

		E_demag
		E_demag_Py, E_demag_Co
		demagnetisation field energy density

		phi
		phi
		scalar potential for H_demag

		rho
		rho
		magnetic charge density (div M)

		H_total
		H_total_Py, H_total_Co
		total effective field

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

under_construction/example_x/info.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 Attempt to study a sphere in a cube, meshed with gmsh.

Unfinished. Currently, the vtk plot (try ‘make mayavi’ looks odd: I
wander whether the simplices are oriented randomly). HF Nov 2008

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_uniaxial_anis/oommf/bar_mag_x.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 # ODT 1.0
Description: Data from vector field file bar_mag.omf
Active volume: (0,0,0) x (5.04e-07,1e-09,1e-09)
Cell size: 1e-09 x 1e-09 x 1e-09
Cells in active volume: 504
#
Table Start
Title: Points in specified volume
Columns: # x m_x m_y m_z
Units: # m {} {} {}

5e-10 0 0 1400000
1.5e-09 0 0 1400000
2.5e-09 0.00281034452313869 0.000437302969549697 1400000
3.5e-09 0.00586318041985762 0.000940943824528093 1400000
4.5e-09 0.00843767713283618 0.00129197005996304 1400000
5.5e-09 0.011739151440589 0.00184266042833701 1400000
6.5e-09 0.014085087081814 0.00208716127779354 1400000
7.5e-09 0.0176409939928233 0.00266659902529621 1400000
8.5e-09 0.0197664413468829 0.00278435702166146 1400000
9.5e-09 0.0235823562465454 0.00337555251547778 1400000
1.05e-08 0.0254963066067867 0.00334671811670876 1400000
1.15e-08 0.0295777040537832 0.00393430646861783 1400000
1.25e-08 0.031290182944491 0.00373972607224195 1400000
1.35e-08 0.0356425326143613 0.00431026094929339 1400000
1.45e-08 0.0371646929148609 0.00393179183380685 1400000
1.55e-08 0.0417935281350001 0.00447401658487207 1400000
1.65e-08 0.0431377153838742 0.00389482460757328 1400000
1.75e-08 0.048048669646891 0.00439991666294339 1400000
1.85e-08 0.0492284550845229 0.00360475276503547 1400000
1.95e-08 0.0544272628189556 0.00406653752277158 1400000
2.05e-08 0.0554574406293511 0.00304198935667757 1400000
2.15e-08 0.0609498995086522 0.00345712007239865 1400000
2.25e-08 0.0618464457223321 0.0021918353712433 1400000
2.35e-08 0.0676383388787786 0.00255993591578312 1400000
2.45e-08 0.0684183304703594 0.0010448145687232 1400000
2.55e-08 0.0745153081219654 0.00136858230847248 1400000
2.65e-08 0.0751968019500366 -0.000403065514451316 1400000
2.75e-08 0.0816042231161928 -0.00011779902928547 1400000
2.85e-08 0.0822060954795109 -0.00215013094560647 1400000
2.95e-08 0.0889288316249484 -0.00189438333224303 1400000
3.05e-08 0.0894705803180176 -0.00418894080773835 1400000
3.15e-08 0.0965127838951106 -0.0039506075883108 1400000
3.25e-08 0.0970142957088547 -0.00650627131782495 1400000
3.35e-08 0.104379137636614 -0.00627020085997043 1400000
3.45e-08 0.104860425238587 -0.00908318630208885 1400000
3.55e-08 0.112549806336169 -0.00883130122499505 1400000
3.65e-08 0.113030719354419 -0.0118951946108235 1400000
3.75e-08 0.121044961613294 -0.0116066593450532 1399999.99999999
3.85e-08 0.121544877516326 -0.014912493953156 1399999.99999999
3.95e-08 0.129882401827232 -0.0145639275544799 1399999.99999999
4.05e-08 0.130419902820879 -0.0181002995058091 1399999.99999999
4.15e-08 0.139076900351742 -0.0176660322269678 1399999.99999999
4.25e-08 0.139669442987313 -0.021419254510398 1399999.99999999
4.35e-08 0.148639547822895 -0.0208716260362663 1399999.99999999
4.45e-08 0.149303132319438 -0.0248259189323608 1399999.99999999
4.55e-08 0.158577103213202 -0.0241356155896128 1399999.99999999
4.65e-08 0.159325949634054 -0.028273331122825 1399999.99999999
4.75e-08 0.168891368782762 -0.0274097587910677 1399999.99999999
4.85e-08 0.169737607171585 -0.0317116363140341 1399999.99999999
4.95e-08 0.179578603802993 -0.0306433251974469 1399999.99999999
5.05e-08 0.180531985180178 -0.0350887747004622 1399999.99999999
5.15e-08 0.190628991447741 -0.0337838115727324 1399999.99999999
5.25e-08 0.191696626202082 -0.0383512208215876 1399999.99999999
5.35e-08 0.202026172415911 -0.0367777038371048 1399999.99999998
5.45e-08 0.203212302110069 -0.0414447649771629 1399999.99999998
5.55e-08 0.213746857712333 -0.03957127565166 1399999.99999998
5.65e-08 0.215052665668981 -0.0443153264781952 1399999.99999998
5.75e-08 0.22576053159984 -0.0421114129844429 1399999.99999998
5.85e-08 0.227183996866459 -0.046909787670189 1399999.99999998
5.95e-08 0.238029254081761 -0.0443464531690668 1399999.99999998
6.05e-08 0.239565052506426 -0.0491768368588146 1399999.99999998
6.15e-08 0.250507570421443 -0.0462270261906137 1399999.99999998
6.25e-08 0.252147025631924 -0.0510678075159592 1399999.99999998
6.35e-08 0.26314253319895 -0.0477068852052659 1399999.99999997
6.45e-08 0.264873619286565 -0.0525375004330038 1399999.99999997
6.55e-08 0.275873840292022 -0.048743712602874 1399999.99999997
6.65e-08 0.277681236983938 -0.0535449747960591 1399999.99999997
6.75e-08 0.288634089997135 -0.049299887227937 1399999.99999997
6.85e-08 0.290499290080073 -0.0540542934513224 1399999.99999997
6.95e-08 0.301349152325508 -0.0493431976440077 1399999.99999997
7.05e-08 0.30325062008308 -0.0540352068596825 1399999.99999997
7.15e-08 0.313938653364969 -0.0488474855027743 1399999.99999996
7.25e-08 0.315852031831987 -0.0534637593419114 1399999.99999996
7.35e-08 0.326316567536506 -0.0477932020848572 1399999.99999996
7.45e-08 0.32821493147623 -0.0523228000996328 1399999.99999996
7.55e-08 0.338391910635056 -0.0461678598113806 1399999.99999996
7.65e-08 0.340246061327205 -0.0506023800436629 1399999.99999996
7.75e-08 0.350069524764613 -0.043966358847026 1399999.99999996
7.85e-08 0.351848321967902 -0.0483000135135473 1399999.99999995
7.95e-08 0.361250944689998 -0.0411911666475232 1399999.99999995
8.05e-08 0.362921670525065 -0.04542078132548 1399999.99999995
8.15e-08 0.371835333758054 -0.0378523252140856 1399999.99999995
8.25e-08 0.373364082753971 -0.0419772479741136 1399999.99999995
8.35e-08 0.381720476410237 -0.0339672566012443 1399999.99999995
8.45e-08 0.383072565576374 -0.0379891608919914 1399999.99999995
8.55e-08 0.390803813431284 -0.0295603314904599 1399999.99999995
8.65e-08 0.391944205958999 -0.0334828929917337 1399999.99999994
8.75e-08 0.398983505463338 -0.0246621578819541 1399999.99999994
8.85e-08 0.399877241528974 -0.0284905807029022 1399999.99999994
8.95e-08 0.406159509964436 -0.0193085365144607 1399999.99999994
9.05e-08 0.406772138093671 -0.0230488976202254 1399999.99999994
9.15e-08 0.412234656701768 -0.0135390156471115 1399999.99999994
9.25e-08 0.412532659260459 -0.0171973877355628 1399999.99999994
9.35e-08 0.417115707035473 -0.00739495922934533 1399999.99999994
9.45e-08 0.417066913626467 -0.0109762607807223 1399999.99999994
9.55e-08 0.420714382655336 -0.000917017818870119 1399999.99999994
9.65e-08 0.420288365515307 -0.00442352384029091 1399999.99999994
9.75e-08 0.422948350063706 0.00585814096197345 1399999.99999994
9.85e-08 0.422116795958354 0.00242871399925081 1399999.99999994
9.95e-08 0.423742147932996 0.0129020285088031 1399999.99999994
1.005e-07 0.422479201531385 0.00955897634253212 1399999.99999994
1.015e-07 0.423028045482152 0.0201997002064201 1399999.99999994
1.025e-07 0.42131061973934 0.0169624703345349 1399999.99999994
1.035e-07 0.420746821188399 0.0277566053484802 1399999.99999994
1.045e-07 0.418554870867035 0.0246588148028919 1399999.99999994
1.055e-07 0.416848452451636 0.0356073344519757 1399999.99999994
1.065e-07 0.414165207555281 0.0327019170105651 1399999.99999994
1.075e-07 0.411292708231745 0.0438268022828327 1399999.99999994
1.085e-07 0.408104864792808 0.0411926131343086 1399999.99999994
1.095e-07 0.404049638156275 0.0525445691099854 1399999.99999994
1.105e-07 0.400347504507526 0.0502948750875617 1399999.99999994
1.115e-07 0.395099953120153 0.061963216740657 1399999.99999994
1.125e-07 0.390877550469518 0.0602566306315153 1399999.99999994
1.135e-07 0.38443529394409 0.0723819747178674 1399999.99999995
1.145e-07 0.379690410757204 0.0714365619233477 1399999.99999995
1.155e-07 0.372058386199142 0.0842271551372829 1399999.99999995
1.165e-07 0.366792586563307 0.084338661923221 1399999.99999995
1.175e-07 0.357983080818173 0.0980914271698387 1399999.99999995
1.185e-07 0.352201667606182 0.0996568672824158 1399999.99999995
1.195e-07 0.342234281579375 0.114784577477017 1399999.99999995
1.205e-07 0.335946215844476 0.118332788008269 1399999.99999995
1.215e-07 0.324847761943395 0.135399203100122 1399999.99999996
1.225e-07 0.318065540550643 0.141630467189887 1399999.99999996
1.235e-07 0.305869875037092 0.161395824803517 1399999.99999996
1.245e-07 0.298609369065755 0.17123329191455 1399999.99999996
1.255e-07 0.285357161789151 0.194713263732269 1399999.99999996
1.265e-07 0.277637418720722 0.209369721876625 1399999.99999996
1.275e-07 0.263375863323677 0.237911886899947 1399999.99999995
1.285e-07 0.255218876456299 0.258976512630512 1399999.99999995
1.295e-07 0.240001344697935 0.294359620128278 1399999.99999995
1.305e-07 0.231431793597377 0.323910725892653 1399999.99999994
1.315e-07 0.21531743792251 0.368473610219163 1399999.99999993
1.325e-07 0.206362404029479 0.409225221800304 1399999.99999993
1.335e-07 0.189415712921377 0.466034298995393 1399999.99999991
1.345e-07 0.180104374682938 0.521526754429476 1399999.99999989
1.355e-07 0.162394685673057 0.594593720546198 1399999.99999986
1.365e-07 0.152757997750761 0.669441550295684 1399999.99999983
1.375e-07 0.134358973221551 0.764006401020134 1399999.99999979
1.385e-07 0.124429334449552 0.864220740893355 1399999.99999973
1.395e-07 0.10541840555826 0.987119784874982 1399999.99999965
1.405e-07 0.0952293203809002 1.12052776612425 1399999.99999955
1.415e-07 0.0756871045566429 1.28067222750983 1399999.99999941
1.425e-07 0.0652728426666909 1.45746254425951 1399999.99999924
1.435e-07 0.0452825401943566 1.66646105561568 1399999.99999901
1.445e-07 0.0346777990209761 1.89989369864822 1399999.99999871
1.455e-07 0.0143245742289692 2.17286201028884 1399999.99999831
1.465e-07 0.00356414878974632 2.48019159021209 1399999.9999978
1.475e-07 -0.0170654986899347 2.83680586392791 1399999.99999713
1.485e-07 -0.0279470342542309 3.24048282201743 1399999.99999625
1.495e-07 -0.0487659027792392 3.70634984444031 1399999.99999509
1.505e-07 -0.0597344979226001 4.23558320179154 1399999.99999359
1.515e-07 -0.0806553164457915 4.84402292654564 1399999.99999162
1.525e-07 -0.0916777274325767 5.53681339913836 1399999.99998905
1.535e-07 -0.112613782344831 6.33117794456485 1399999.99998568
1.545e-07 -0.123657832569075 7.23696300659376 1399999.99998129
1.555e-07 -0.144523583896736 8.27365359683905 1399999.99997554
1.565e-07 -0.1555583983193 9.45674868803265 1399999.99996805
1.575e-07 -0.176270080606431 10.8091406311885 1399999.99995826
1.585e-07 -0.187266291773959 12.3532161431591 1399999.99994549
1.595e-07 -0.207742495207769 14.1167651754862 1399999.99992881
1.605e-07 -0.218672418802769 16.1306709778868 1399999.99990705
1.615e-07 -0.238834646379242 18.4295565712 1399999.99987868
1.625e-07 -0.249672424764668 21.0548996730154 1399999.99984165
1.635e-07 -0.269445621537202 24.0506679316286 1399999.99979339
1.645e-07 -0.280167334294347 27.4716709503732 1399999.99973044
1.655e-07 -0.299480384997823 31.3744789674005 1399999.99964841
1.665e-07 -0.310064126004366 35.8308059000716 1399999.99954145
1.675e-07 -0.328850317599171 40.9140505963342 1399999.99940212
1.685e-07 -0.339276238746954 46.7174930100075 1399999.99922049
1.695e-07 -0.357473684680679 53.3368431566354 1399999.99898395
1.705e-07 -0.367724006880066 60.8930287315991 1399999.99867568
1.715e-07 -0.385276030119566 69.5111854706905 1399999.9982743
1.725e-07 -0.395335022770839 79.3478205535637 1399999.99775135
1.735e-07 -0.412190494913359 90.5667306304538 1399999.99707053
1.745e-07 -0.422044425534534 103.370343441322 1399999.99618371
1.755e-07 -0.438158059568105 117.973108323688 1399999.99502934
1.765e-07 -0.447795115745025 134.636851392003 1399999.99352597
1.775e-07 -0.463127710292742 153.642250611851 1399999.99156923
1.785e-07 -0.472537896549627 175.328091108215 1399999.98902137
1.795e-07 -0.48705652970749 200.061516535462 1399999.98570541
1.805e-07 -0.496231542278011 228.281145043048 1399999.98138838
1.815e-07 -0.509909713438342 260.466885545484 1399999.97577026
1.825e-07 -0.518842796236819 297.186977235972 1399999.96845701
1.835e-07 -0.531660514585299 339.068279867426 1399999.95894015
1.845e-07 -0.540346299926114 386.847437764952 1399999.94655313
1.855e-07 -0.552290118605919 441.342705761322 1399999.93043439
1.865e-07 -0.560724456392434 503.509621852943 1399999.90945634
1.875e-07 -0.571787451643314 574.415625955622 1399999.88215941
1.885e-07 -0.579967230829302 655.300865910752 1399999.84663586
1.895e-07 -0.590148925730085 747.557119027626 1399999.80041356
1.905e-07 -0.598071891829883 852.794669972329 1399999.74026458
1.915e-07 -0.607378124577865 972.827373727035 1399999.66200229
1.925e-07 -0.61504269686614 1109.74695165501 1399999.56016469
1.935e-07 -0.623485433809921 1265.91646318119 1399999.42766243
1.945e-07 -0.630890525547457 1444.05389491384 1399999.25525264
1.955e-07 -0.638487619382501 1647.23686837012 1399999.03093191
1.965e-07 -0.645632463922109 1878.99808141826 1399998.73905864
1.975e-07 -0.652407357523819 2143.34481135633 1399998.35931068
1.985e-07 -0.659291342366173 2444.86965354561 1399997.86521692
1.995e-07 -0.665272718535068 2788.78933566753 1399997.22237353
2.005e-07 -0.67189522820961 3181.07534413778 1399996.38598077
2.015e-07 -0.677116604935032 3628.51781426784 1399995.29779854
2.025e-07 -0.683476871737156 4138.88211694043 1399993.88200604
2.035e-07 -0.687976141147195 4721.00521787687 1399992.04001639
2.045e-07 -0.694073099809716 5384.98621274645 1399989.64350563
2.055e-07 -0.697892006142976 6142.32466794809 1399986.52559487
2.065e-07 -0.703724143884269 7006.15556578569 1399982.4690987
2.075e-07 -0.706907690682724 7991.44188886753 1399977.1915485
2.085e-07 -0.712472876387303 9115.26762262477 1399970.32536253
2.095e-07 -0.715068644115236 10397.1003968914 1399961.39243296
2.105e-07 -0.720363907879487 11859.1602765067 1399949.77064072
2.115e-07 -0.722421247434787 13526.7728266558 1399934.65076638
2.125e-07 -0.727442460688352 15428.8366113117 1399914.97991853
2.135e-07 -0.729011501483292 17598.292812925 1399889.38851951
2.145e-07 -0.733752872860479 20072.7208488004 1399856.09470302
2.155e-07 -0.734883238324849 22894.9578123377 1399812.78066255
2.165e-07 -0.739336481329881 26113.8594998715 1399756.43107702
2.175e-07 -0.740075527268715 29785.1114167665 1399683.12383101
2.185e-07 -0.744228456461893 33972.2015397174 1399587.75699203
2.195e-07 -0.744618716471557 38747.4738698031 1399463.6948732
2.205e-07 -0.748452861478192 44193.3683334267 1399302.30693542
2.215e-07 -0.748528163403198 50403.7759479217 1399092.36984898
2.225e-07 -0.752014708699355 57485.6072273443 1398819.28960146
2.235e-07 -0.75179405645796 65560.5099157764 1398464.09304602
2.245e-07 -0.754886945062304 74766.8222561319 1398002.11812756
2.255e-07 -0.754364646836744 85261.6978888487 1397401.31775827
2.265e-07 -0.756988906560325 97223.4660954077 1396620.0620211
2.275e-07 -0.756118423755874 110854.146447144 1395604.29857998
2.285e-07 -0.758150506458677 126382.133892237 1394283.88652823
2.295e-07 -0.756817884080487 144064.917982235 1392567.87964041
2.305e-07 -0.758052803078409 164191.748653989 1390338.47306092
2.315e-07 -0.756033059959935 187085.974474234 1387443.27385103
2.325e-07 -0.75613012302319 213106.744117285 1383685.48290829
2.335e-07 -0.753016475296651 242649.490987307 1378811.5261061
2.345e-07 -0.751411480803247 276144.437268936 1372495.62832268
2.355e-07 -0.746503226267778 314051.916024701 1364320.85450625
2.365e-07 -0.742271405120041 356852.885300488 1353756.26249786
2.375e-07 -0.734404449646486 405032.314962681 1340130.15182684
2.385e-07 -0.726060307337856 459052.420051719 1322600.04371848
2.395e-07 -0.713373663994773 519311.852122528 1300121.22521116
2.405e-07 -0.698616051269011 586086.341851613 1271417.63394036
2.415e-07 -0.678291358449342 659446.159421999 1234961.84670747
2.425e-07 -0.653778308700375 739147.032451506 1188975.04785328
2.435e-07 -0.621912203492427 824494.865897483 1131462.86554544
2.445e-07 -0.583331075542483 914192.342225664 1060307.67299667
2.455e-07 -0.535341759939068 1006188.39516925 973439.732816796
2.465e-07 -0.478316972296614 1097569.41093707 869103.784467097
2.475e-07 -0.410521363163695 1184549.6234111 746218.593762214
2.485e-07 -0.3329423998932 1262627.46032892 604790.787316753
2.495e-07 -0.245551209502583 1326959.03572069 446295.54951752
2.505e-07 -0.150836415550212 1372946.33711563 273894.788925898
2.515e-07 -0.0507633879507166 1396950.05683174 92360.9155314212
2.525e-07 0.0507633881892095 1396950.05683174 -92360.9155314385
2.535e-07 0.150836415761168 1372946.33711562 -273894.788925915
2.545e-07 0.245551209942726 1326959.03572069 -446295.549517536
2.555e-07 0.332942400151483 1262627.46032892 -604790.787316767
2.565e-07 0.410521363756034 1184549.62341109 -746218.593762226
2.575e-07 0.478316972505107 1097569.41093706 -869103.784467108
2.585e-07 0.535341760300821 1006188.39516924 -973439.732816805
2.595e-07 0.583331075471552 914192.342225656 -1060307.67299668
2.605e-07 0.621912203754314 824494.865897475 -1131462.86554545
2.615e-07 0.653778308843919 739147.032451499 -1188975.04785328
2.625e-07 0.678291358636891 659446.159421991 -1234961.84670747
2.635e-07 0.698616051354535 586086.341851607 -1271417.63394036
2.645e-07 0.713373664441062 519311.852122522 -1300121.22521116
2.655e-07 0.72606030747565 459052.420051714 -1322600.04371848
2.665e-07 0.734404449854554 405032.314962677 -1340130.15182684
2.675e-07 0.742271405201188 356852.885300483 -1353756.26249786
2.685e-07 0.746503226391273 314051.916024697 -1364320.85450625
2.695e-07 0.75141148084744 276144.437268933 -1372495.62832268
2.705e-07 0.753016475395936 242649.490987304 -1378811.5261061
2.715e-07 0.756130123011192 213106.744117283 -1383685.48290829
2.725e-07 0.756033060123457 187085.974474232 -1387443.27385103
2.735e-07 0.758052803056751 164191.748653987 -1390338.47306092
2.745e-07 0.756817884187287 144064.917982234 -1392567.87964041
2.755e-07 0.758150506460828 126382.133892236 -1394283.88652823
2.765e-07 0.756118423788981 110854.146447143 -1395604.29857998
2.775e-07 0.756988906574854 97223.4660954065 -1396620.0620211
2.785e-07 0.754364646845317 85261.6978888476 -1397401.31775827
2.795e-07 0.754886945114776 74766.822256131 -1398002.11812756
2.805e-07 0.75179405648452 65560.5099157756 -1398464.09304602
2.815e-07 0.752014708723529 57485.6072273436 -1398819.28960146
2.825e-07 0.748528163432362 50403.7759479211 -1399092.36984898
2.835e-07 0.748452861462652 44193.3683334262 -1399302.30693542
2.845e-07 0.744618716501868 38747.4738698026 -1399463.6948732
2.855e-07 0.744228456447045 33972.201539717 -1399587.75699203
2.865e-07 0.740075527285948 29785.1114167661 -1399683.12383101
2.875e-07 0.739336481327847 26113.8594998712 -1399756.43107702
2.885e-07 0.734883238337198 22894.9578123374 -1399812.78066255
2.895e-07 0.733752872863891 20072.7208488002 -1399856.09470302
2.905e-07 0.729011501490399 17598.2928129247 -1399889.38851951
2.915e-07 0.727442460695941 15428.8366113116 -1399914.97991853
2.925e-07 0.72242124743547 13526.7728266556 -1399934.65076638
2.935e-07 0.720363907882702 11859.1602765066 -1399949.77064072
2.945e-07 0.71506864411137 10397.1003968912 -1399961.39243296
2.955e-07 0.71247287639353 9115.26762262468 -1399970.32536253
2.965e-07 0.7069076906736 7991.44188886741 -1399977.1915485
2.975e-07 0.703724143892164 7006.15556578562 -1399982.4690987
2.985e-07 0.697892006127804 6142.32466794801 -1399986.52559487
2.995e-07 0.694073099820414 5384.98621274639 -1399989.64350563
3.005e-07 0.687976141128009 4721.00521787681 -1399992.04001639
3.015e-07 0.683476871747764 4138.88211694039 -1399993.88200604
3.025e-07 0.677116604914066 3628.5178142678 -1399995.29779854
3.035e-07 0.671895228222053 3181.07534413773 -1399996.38598077
3.045e-07 0.665272718516838 2788.7893356675 -1399997.22237353
3.055e-07 0.659291342380115 2444.86965354557 -1399997.86521692
3.065e-07 0.652407357510571 2143.34481135631 -1399998.35931068
3.075e-07 0.645632463935265 1878.99808141822 -1399998.73905864
3.085e-07 0.638487619372652 1647.23686837011 -1399999.03093191
3.095e-07 0.63089052555761 1444.0538949138 -1399999.25525264
3.105e-07 0.623485433802584 1265.9164631812 -1399999.42766243
3.115e-07 0.615042696872222 1109.74695165497 -1399999.56016469
3.125e-07 0.607378124573146 972.827373727043 -1399999.66200229
3.135e-07 0.598071891832407 852.794669972297 -1399999.74026458
3.145e-07 0.590148925727845 747.557119027637 -1399999.80041356
3.155e-07 0.579967230828656 655.300865910722 -1399999.84663586
3.165e-07 0.571787451643778 574.415625955635 -1399999.88215941
3.175e-07 0.560724456389597 503.509621852915 -1399999.90945634
3.185e-07 0.552290118608309 441.342705761337 -1399999.93043439
3.195e-07 0.54034629992173 386.847437764926 -1399999.94655313
3.205e-07 0.531660514589473 339.06827986744 -1399999.95894015
3.215e-07 0.518842796231397 297.186977235948 -1399999.96845701
3.225e-07 0.509909713443819 260.466885545498 -1399999.97577026
3.235e-07 0.496231542271873 228.281145043026 -1399999.98138838
3.245e-07 0.487056529713733 200.061516535476 -1399999.98570541
3.255e-07 0.472537896543176 175.328091108195 -1399999.98902137
3.265e-07 0.463127710299459 153.642250611865 -1399999.99156923
3.275e-07 0.447795115738876 134.636851391984 -1399999.99352597
3.285e-07 0.438158059574773 117.973108323701 -1399999.99502934
3.295e-07 0.422044425529084 103.370343441306 -1399999.99618371
3.305e-07 0.412190494919437 90.5667306304658 -1399999.99707053
3.315e-07 0.39533502276633 79.3478205535487 -1399999.99775135
3.325e-07 0.385276030124668 69.5111854707022 -1399999.9982743
3.335e-07 0.367724006876754 60.8930287315852 -1399999.99867568
3.345e-07 0.357473684684558 53.3368431566469 -1399999.99898395
3.355e-07 0.339276238744826 46.7174930099942 -1399999.99922049
3.365e-07 0.328850317601742 40.9140505963459 -1399999.99940212
3.375e-07 0.310064126003404 35.8308059000585 -1399999.99954145
3.385e-07 0.299480384999198 31.3744789674127 -1399999.99964841
3.395e-07 0.280167334294372 27.47167095036 -1399999.99973044
3.405e-07 0.269445621537555 24.0506679316414 -1399999.99979339
3.415e-07 0.249672424765443 21.0548996730018 -1399999.99984165
3.425e-07 0.238834646378811 18.4295565712136 -1399999.99987868
3.435e-07 0.218672418804052 16.1306709778727 -1399999.99990705
3.445e-07 0.207742495206791 14.1167651755004 -1399999.99992881
3.455e-07 0.187266291775546 12.3532161431444 -1399999.99994549
3.465e-07 0.176270080605117 10.8091406312033 -1399999.99995826
3.475e-07 0.155558398321021 9.45674868801746 -1399999.99996805
3.485e-07 0.144523583895247 8.27365359685446 -1399999.99997554
3.495e-07 0.123657832570831 7.23696300657811 -1399999.99998129
3.505e-07 0.112613782343279 6.3311779445807 -1399999.99998568
3.515e-07 0.0916777274343197 5.53681339912234 -1399999.99998905
3.525e-07 0.0806553164442277 4.84402292656185 -1399999.99999162
3.535e-07 0.0597344979243198 4.23558320177518 -1399999.99999359
3.545e-07 0.0487659027776845 3.70634984445685 -1399999.99999509
3.555e-07 0.0279470342559314 3.24048282200076 -1399999.99999625
3.565e-07 0.0170654986883951 2.83680586394478 -1399999.99999713
3.575e-07 -0.00356414878806657 2.48019159019511 -1399999.9999978
3.585e-07 -0.0143245742304905 2.17286201030608 -1399999.99999831
3.595e-07 -0.034677799019331 1.89989369863089 -1399999.99999871
3.605e-07 -0.0452825401958466 1.66646105563333 -1399999.99999901
3.615e-07 -0.065272842665114 1.45746254424178 -1399999.99999924
3.625e-07 -0.0756871045580772 1.28067222752795 -1399999.99999941
3.635e-07 -0.0952293203794377 1.12052776610608 -1399999.99999955
3.645e-07 -0.105418405559605 0.987119784893618 -1399999.99999965
3.655e-07 -0.124429334448255 0.864220740874662 -1399999.99999973
3.665e-07 -0.134358973222763 0.764006401039323 -1399999.99999979
3.675e-07 -0.152757997749681 0.669441550276421 -1399999.99999983
3.685e-07 -0.162394685674091 0.594593720565974 -1399999.99999986
3.695e-07 -0.180104374682117 0.521526754409592 -1399999.99999989
3.705e-07 -0.189415712922187 0.466034299015786 -1399999.99999991
3.715e-07 -0.20636240402895 0.409225221779752 -1399999.99999993
3.725e-07 -0.215317437923055 0.368473610240203 -1399999.99999993
3.735e-07 -0.231431793597163 0.323910725871391 -1399999.99999994
3.745e-07 -0.240001344698181 0.294359620149998 -1399999.99999995
3.755e-07 -0.255218876456415 0.258976512608499 -1399999.99999995
3.765e-07 -0.263375863323597 0.237911886922382 -1399999.99999995
3.775e-07 -0.277637418721175 0.209369721853821 -1399999.99999996
3.785e-07 -0.285357161788724 0.194713263755461 -1399999.99999996
3.795e-07 -0.298609369066547 0.171233291890917 -1399999.99999996
3.805e-07 -0.305869875036305 0.16139582482751 -1399999.99999996
3.815e-07 -0.318065540551771 0.141630467165388 -1399999.99999996
3.825e-07 -0.32484776194224 0.135399203124962 -1399999.99999996
3.835e-07 -0.335946215845935 0.118332787982869 -1399999.99999995
3.845e-07 -0.342234281577852 0.114784577502753 -1399999.99999995
3.855e-07 -0.352201667607964 0.0996568672560807 -1399999.99999995
3.865e-07 -0.357983080816288 0.0980914271965157 -1399999.99999995
3.875e-07 -0.366792586565402 0.0843386618959201 -1399999.99999995
3.885e-07 -0.37205838619691 0.0842271551649442 -1399999.99999995
3.895e-07 -0.3796904107596 0.0714365618950518 -1399999.99999995
3.905e-07 -0.384435293941532 0.0723819747465522 -1399999.99999995
3.915e-07 -0.390877550472197 0.0602566306021964 -1399999.99999994
3.925e-07 -0.395099953117295 0.0619632167703995 -1399999.99999994
3.935e-07 -0.400347504510468 0.0502948750571936 -1399999.99999994
3.945e-07 -0.404049638153149 0.0525445691408147 -1399999.99999994
3.955e-07 -0.408104864795988 0.041192613102867 -1399999.99999994
3.965e-07 -0.411292708228388 0.0438268023147722 -1399999.99999994
3.975e-07 -0.41416520755867 0.0327019169780285 -1399999.99999994
3.985e-07 -0.416848452448088 0.0356073344850431 -1399999.99999994
3.995e-07 -0.418554870870599 0.024658814769242 -1399999.99999994
4.005e-07 -0.4207468211847 0.0277566053826875 -1399999.99999994
4.015e-07 -0.421310619743042 0.0169624702997578 -1399999.99999994
4.025e-07 -0.423028045478345 0.0201997002417741 -1399999.99999994
4.035e-07 -0.422479201535183 0.00955897630661914 -1399999.99999994
4.045e-07 -0.423742147929125 0.0129020285453044 -1399999.99999994
4.055e-07 -0.422116795962206 0.00242871396219941 -1399999.99999994
4.065e-07 -0.422948350059816 0.00585814099961653 -1399999.99999994
4.075e-07 -0.420288365519168 -0.00442352387847648 -1399999.99999994
4.085e-07 -0.42071438265147 -0.000917017780096633 -1399999.99999994
4.095e-07 -0.41706691363029 -0.0109762608200306 -1399999.99999994
4.105e-07 -0.417115707031678 -0.00739495918945947 -1399999.99999994
4.115e-07 -0.412532659264197 -0.0171973877759745 -1399999.99999994
4.125e-07 -0.412234656698088 -0.0135390156061379 -1399999.99999994
4.135e-07 -0.406772138097278 -0.0230488976617137 -1399999.99999994
4.145e-07 -0.406159509960915 -0.019308536472431 -1399999.99999994
4.155e-07 -0.399877241532403 -0.0284905807454326 -1399999.99999994
4.165e-07 -0.398983505460019 -0.0246621578389067 -1399999.99999994
4.175e-07 -0.391944205962205 -0.0334828930352642 -1399999.99999994
4.185e-07 -0.390803813428211 -0.0295603314464402 -1399999.99999995
4.195e-07 -0.383072565579314 -0.0379891609364729 -1399999.99999995
4.205e-07 -0.381720476407451 -0.0339672565563044 -1399999.99999995
4.215e-07 -0.373364082756605 -0.0419772480194896 -1399999.99999995
4.225e-07 -0.371835333755593 -0.0378523251682845 -1399999.99999995
4.235e-07 -0.362921670527354 -0.0454207813716873 -1399999.99999995
4.245e-07 -0.361250944687899 -0.0411911666009266 -1399999.99999995
4.255e-07 -0.351848321969811 -0.0483000135605164 -1399999.99999995
4.265e-07 -0.350069524762908 -0.0439663587997059 -1399999.99999996
4.275e-07 -0.340246061328702 -0.0506023800913174 -1399999.99999996
4.285e-07 -0.338391910633775 -0.0461678597634153 -1399999.99999996
4.295e-07 -0.328214931477289 -0.0523228001478911 -1399999.99999996
4.305e-07 -0.326316567535674 -0.0477932020363312 -1399999.99999996
4.315e-07 -0.315852031832585 -0.0534637593906859 -1399999.99999996
4.325e-07 -0.313938653364607 -0.0488474854537776 -1399999.99999996
4.335e-07 -0.303250620083199 -0.0540352069088802 -1399999.99999997
4.345e-07 -0.301349152325632 -0.0493431975946357 -1399999.99999997
4.355e-07 -0.2904992900797 -0.0540542935008453 -1399999.99999997
4.365e-07 -0.288634089997756 -0.0492998871782899 -1399999.99999997
4.375e-07 -0.277681236983066 -0.0535449748458049 -1399999.99999997
4.385e-07 -0.275873840293145 -0.0487437125530566 -1399999.99999997
4.395e-07 -0.264873619285189 -0.0525375004828659 -1399999.99999997
4.405e-07 -0.263142533200577 -0.0477068851553867 -1399999.99999997
4.415e-07 -0.252147025630047 -0.0510678075658275 -1399999.99999998
4.425e-07 -0.250507570423568 -0.0462270261407846 -1399999.99999998
4.435e-07 -0.239565052504055 -0.0491768369085755 -1399999.99999998
4.445e-07 -0.238029254084374 -0.044346453119403 -1399999.99999998
4.455e-07 -0.227183996863606 -0.0469097877197265 -1399999.99999998
4.465e-07 -0.225760531602927 -0.0421114129350615 -1399999.99999998
4.475e-07 -0.215052665665664 -0.0443153265273911 -1399999.99999998
4.485e-07 -0.213746857715874 -0.0395712756026804 -1399999.99999998
4.495e-07 -0.20321230210631 -0.0414447650258973 -1399999.99999998
4.505e-07 -0.202026172419881 -0.0367777037886473 -1399999.99999998
4.515e-07 -0.191696626197908 -0.0383512208697396 -1399999.99999999
4.525e-07 -0.190628991452111 -0.0337838115249183 -1399999.99999999
4.535e-07 -0.18053198517562 -0.0350887747479104 -1399999.99999999
4.545e-07 -0.17957860380773 -0.0306433251503974 -1399999.99999999
4.555e-07 -0.169737607166678 -0.0317116363606573 -1399999.99999999
4.565e-07 -0.168891368787828 -0.0274097587449038 -1399999.99999999
4.575e-07 -0.159325949628838 -0.0282733311685025 -1399999.99999999
4.585e-07 -0.158577103218556 -0.0241356155444545 -1399999.99999999
4.595e-07 -0.149303132313955 -0.0248259189769731 -1399999.99999999
4.605e-07 -0.148639547828494 -0.0208716259922321 -1399999.99999999
4.615e-07 -0.139669442981609 -0.0214192545538275 -1399999.99999999
4.625e-07 -0.139076900357538 -0.0176660321841744 -1399999.99999999
4.635e-07 -0.130419902815 -0.0181002995479401 -1399999.99999999
4.645e-07 -0.129882401833177 -0.0145639275130416 -1399999.99999999
4.655e-07 -0.121544877510324 -0.0149124939938756 -1399999.99999999
4.665e-07 -0.121044961619337 -0.0116066593050813 -1399999.99999999
4.675e-07 -0.113030719348345 -0.011895194650022 -1400000
4.685e-07 -0.112549806342258 -0.00883130118659746 -1400000
4.695e-07 -0.104860425232494 -0.00908318633966014 -1400000
4.705e-07 -0.104379137642695 -0.00627020082325144 -1400000
4.715e-07 -0.0970142957027952 -0.00650627135366682 -1400000
4.725e-07 -0.096512783901132 -0.00395060755337043 -1400000
4.735e-07 -0.0894705803120453 -0.00418894084175301 -1400000
4.745e-07 -0.0889288316308563 -0.00189438329917688 -1400000
4.755e-07 -0.0822060954736784 -0.00215013097770083 -1400000
4.765e-07 -0.0816042231219349 -0.000117798998184207 -1400000
4.775e-07 -0.0751968019443957 -0.00040306554453732 -1400000
4.785e-07 -0.0745153081274908 0.00136858233752342 -1400000
4.795e-07 -0.0684183304649604 0.00104481454072823 -1400000
4.805e-07 -0.067638338884038 0.00255993594270377 -1400000
4.815e-07 -0.0618464457172232 0.00219183534541644 -1400000
4.825e-07 -0.0609498995135985 0.00345712009711481 -1400000
4.835e-07 -0.0554574406245781 0.00304198933309003 -1400000
4.845e-07 -0.0544272628235442 0.00406653754521507 -1400000
4.855e-07 -0.0492284550801287 0.00360475274375234 -1400000
4.865e-07 -0.0480486696510807 0.0043999166830522 -1400000
4.875e-07 -0.0431377153798983 0.00389482458865336 -1400000
4.885e-07 -0.0417935281387531 0.00447401660259063 -1400000
4.895e-07 -0.0371646929113393 0.0039317918173024 -1400000
4.905e-07 -0.0356425326176437 0.00431026096457274 -1400000
4.915e-07 -0.0312901829414555 0.00373972605819861 -1400000
4.925e-07 -0.0295777040565653 0.0039343064814157 -1400000
4.935e-07 -0.0254963066042646 0.00334671810516539 -1400000
4.945e-07 -0.023582356248802 0.0033755525257588 -1400000
4.955e-07 -0.0197664413448972 0.00278435701264998 -1400000
4.965e-07 -0.0176409939945338 0.00266659903303197 -1400000
4.975e-07 -0.0140850870803826 0.0020871612713389 -1400000
4.985e-07 -0.0117391514417381 0.0018426604335061 -1400000
4.995e-07 -0.00843767713197214 0.0012919700560831 -1400000
5.005e-07 -0.00586318042043478 0.000940943827116218 -1400000
5.015e-07 -0.0028103445228498 0.000437302968255189 -1400000
5.025e-07 0 0 -1400000
5.035e-07 0 0 -1400000

Table End

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_vortex/allopt.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 # magpar configuration file: allopt.txt
#
magpar version 0.5
#
required options
#
###

project name
-simName nanodot

start in debugger (the debugger ddd must be in your path)
#-ddd

mesh type
0: Patran: <simName>.out
1: AVS: <simName>.inp
-meshtype 1

initial magnetization
negative values: select abs(init_mag), but reverse the magnetization
0: magnetization from inp (set file number by -inp below)
1: Mx=1
2: My=1
3: Mz=1
4: Mx=My=Mz=sqrt(1/3)=0.57735027
5: artificial flower state, center: x=y=z=init_magparm
6: set magnetization in x-z plane to theta=init_magpar (from z-axis)
7: vortex state: core radius = init_magparm, center in (x=0,y=0)
8: random magnetization
9: Bloch wall: center at x = init_magparm, width=x/10
10: M // anisotropy axes
-init_mag 1
-init_magparm 0.6
number of first inp file (to be read or written)
full file name: <simName>.<inp>.inp
-inp 0001

regular mesh refinement
number of regular refinement steps
(every step generates 8x as many elements and about 8x as many nodes!!!)
-refine 0

mesh distortion parameter
0: no distortion
1: distort only interior mesh
2: distort only boundary mesh
3: distort whole mesh
-meshdist 0
max. distortion = distpar*(min. edge length of all tetrahedra)
-distpar 0.1

modify element property ids
0: do not modify any
modify init/modifypropser.c or init/modifyproppar.c to your needs
and call them from init/serinit.c and init/parinit.c, respectively
-nsliceprop 0

definition of slice plane for PNG output
definition: nx*x+ny*y+nz*z = nx*vx+ny*vy+nz*vz
slice_n (nx,ny,nz): normal vector on slice plane
slice_p (vx,vy,vz): any point in the slice plane
Coordinates in (dimensionless) units of the finite element mesh.
The values must be separated with commas with no intervening spaces.
-slice_n 0,0,1
-slice_p 0,0,0.1
select area to be drawn in PNG files based on property id
(line number in krn file)
0: plot magnetization of grains with any property id
>0: only grain with given property id
<0: all grains except the one with the given property id
-slice_g 0
image resolution:
number of pixels on longer edge
-> max. image size: res x res pixels
-res 20

definition of data sampling line
vector line_v (vx,vy,vz), point line_p (px,py,pz)
Coordinates in (dimensionless) units of the finite element mesh.
The values must be separated with commas with no intervening spaces.
-line_v 1,0,0
-line_p 0,0,0.1

periodic boundary conditions (beware: incomplete/untested)
-pbx 1e99,1e99
-pby 1e99,1e99
-pbz 1e99,1e99

switch demagnetizing=magnetostatic field on/off
0: demagnetizing field off
1: demagnetizing field on
-demag 1

minimization method
0: PVODE (LLG time integration) or
1: TAO (energy minimization)
-mode 0

configure TAO options below!
configure PVODE options below!

set external field
0: homogeneous external field
1: rotating external field (sweeping phi: rotation in xy plane (z=0))
2: custom external field defined in fields/hexternalcust.c
-hextshape 0

/* mu0 = 4*M_PI*1e-7 = 12.566371e-7 Tm/A (=Vs/Am)*/
/* gamma = mu0*g*|e|/(2*me) [m/As] (cf. Diplomarbeit Scholz S. 14) */
795.77472 kA/m = 1 T

external field (kA/m)
-hextini 12.0
direction of external field (rad)
theta measured from the z-axis
phi measured from the x-axis in the x-y-plane
Pi/4 = 0.7853981 rad = 45 deg
Pi/2 = 1.5707963 rad = 90 deg
-htheta 1.5707963
-hphi 0.0
change external field in these steps (kA/m)
-hstep -5.0
change external field at this speed (kA/(m*ns)) or
GHz for hextshape==1 (rotating field)
-hsweep 0.0
stop simulation if Hext < Hfinal (kA/m)
-hfinal -200.0

output of data files (inp, png, dat files)
write inp file in equilibrium (torque=max(|dM/dt|)<condinp_equil)
0: off
1: on
-condinp_equil 1
set the following options to very high values (e.g. 1e99)
if output should be disabled:
write inp file if |M_current - M_lastinp| > condinp_j (units of Ms // Hext)
-condinp_j 0.1
write inp file if (t_current - t_lastinp) > condinp_t (nanoseconds)
-condinp_t 0.1

which data to color code in GeomView off file
0: processor assignment (mesh partitioning)
1: element volume
2: element id
3: element property
4: element quality
5: K1 (J/m^3)
6: Js (T)
7: A (J/m)
8: 4*sqrt(A*K1) (J/m^2)
100: vertex solid angle
101: vertex volume
102: bnd indicator
103: vertex id
104: Mx
105: My
106: Mz
107: u1
108: u2
109: u1+u2
110: vertex id (periodic boundary)
-offdata 0

tolerances
if (torque=max(|dM/dt|) < tol): equilibrium
-tol 1e-4
max(|M|) > renormtol : renormalize all M on all nodes and restart PVODE
-renormtol 1e-2

distortion parameter for energy minimization
the magnetization on all nodes is randomly distorted
after equilibrium has been reached
-magdist 0.001

scaling parameters
size scaling of finite element mesh (unit: m)
-size 100e-9

dimensionless Landau-Lifshitz-Gilbert damping constant
define for every grain together with material parameters in *.krn

exit condition
stop simulation if |J//Hext| < jfinal (1)
-jfinal -0.9999

options for solvers
#
###

Krylov subspace solver for linear systems
important for accuracy and speed of calculation of the demagnetizing field
#
-ksp_type one of: (cf. PETSc manual chapter 4.3 Krylov Methods p. 63
richardson chebychev cg gmres tcqmr bcgs cgs tfqmr cr lsqr
preonly qcg bicg fgmres minres symmlq lgmres

gmres: good for small systems
cg: shows better convergence rate for large systems
preonly: for use with direct solvers (e.g. “-pc_type lu”, see below)

#-ksp_type gmres
#-ksp_type preonly
-ksp_type cg

monitor convergence (print residual at every iteration)
#-ksp_monitor

Maximum number of iterations (KSPSetTolerances)
<10000>
-ksp_max_it 1000
Relative decrease in residual norm (KSPSetTolerances)
<1e-05>
-ksp_rtol 1e-5
Absolute value of residual norm (KSPSetTolerances)
<1e-50>
-ksp_atol 1e-5
Residual norm increase cause divergence (KSPSetTolerances)
<10000>
-ksp_divtol 1000

#Preconditioner (PC) Options for linear systems ——————————
-pc_type Preconditioner:(one of) none jacobi pbjacobi bjacobi sor lu shell mg
eisenstat ilu icc cholesky asm sles composite redundant nn mat milu jacobic multilevel schur (see manual page PCSetType)
#
default on single proc: icc (good, even better for small systems: lu - i.e. direct solver)
default on multi-proc: bjacobi
direct solver: lu (use together with “-ksp_type preonly”)
(PETSc LU solver only available for single processor,
use SuperLU_DIST as a direct parallel solver)

#-pc_type icc
apply Manteuffel shift to diagonal to force positive definite preconditioner
(required by ICC, automatic default for PETSc >=2.2.1)
#-pc_icc_shift

#-pc_type lu
#-pc_type bjacobi

default on multi-proc: icc
-sub_pc_type icc
apply Manteuffel shift to diagonal to force positive definite preconditioner
(required by ICC, automatic default for PETSc >=2.2.1)
-sub_pc_icc_shift

cf. PETSc manual chapter 13: Hints for Performance Tuning
section 13.7, p. 141: Tips for Efficient Use of Linear Solvers

TAO methods ————————————————————
tao_nls - Newton’s method with line search for unconstrained minimization
tao_ntr - Newton’s method with trust region for unconstrained minimization
tao_lmvm - Limited memory variable metric method for unconstrained minimization
tao_cg_fr - Fletcher-Reeves Nonlinear conjugate gradient method for unconstrained minimization
tao_cg_pr - Polak-Ribiere Nonlinear conjugate gradient method for unconstrained minimization
tao_cg_prp - Polak-Ribiere-Plus Nonlinear conjugate gradient method for unconstrained minimization
tao_tron - Newton Trust Region method for bound constrained minimization
tao_gpcg - Newton Trust Region method for quadratic bound constrained minimization
tao_blmvm - Limited memory variable metric method for bound constrained minimization
tao_kt - Formulate a bound constrained problem as a complementarity problem
tao_bqpip - Interior point method for quadratic bound constrained minimization
tao_ssils - Infeasible semismooth method with a linesearch for complementarity problems
tao_ssfls - Feasible semismooth method with a linesearch for complementarity problems

#TAO solver ————————————————-
-tao_method Select TAO method:(one of) tao_lmvm tao_nls tao_cg_fr tao_cg_prp tao_cg_pr tao_bqpip tao_blmvm tao_tron
tao_ntr tao_gpcg tao_ssils tao_ssfls tao_kt (see manual page TaoSetMethod)
Limited Memory Variable Metric method for unconstrained optimization
More-Thuente line line search options for unconstrained minimization
-tao_method tao_lmvm
-tao_ls_maxfev <30>: max function evals in line search ()
-tao_ls_ftol <0.001>: tol for sufficient decrease ()
-tao_ls_gtol <0.99>: tol for curvature condition ()
-tao_ls_rtol <1e-10>: relative tol for acceptable step ()
-tao_ls_stepmin <1e-20>: lower bound for step ()
-tao_ls_stepmax <1e+20>: upper bound for step ()
-tao_view: view TAO_SOLVER info after each minimization has completed (TaoView)
-tao_view
-tao_fatol <1e-4>: Stop if solution within (TaoSetTolerances)
-tao_fatol 1e-10
-tao_frtol <1e-4>: Stop if relative solution within (TaoSetTolerances)
-tao_frtol 1e-10
-tao_catol <0>: Stop if constraints violations within (TaoSetTolerances)
-tao_crtol <0>: Stop if relative contraint violations within (TaoSetTolerances)
-tao_gatol <0>: Stop if norm of gradient less than (TaoSetGradientTolerances)
-tao_grtol <0>: Stop if norm of gradient divided by the function value is less than (TaoSetGradientTolerances)
-tao_gttol <0>: Stop if the norm of the gradient is less than the norm of the initial gradient times (TaoSetGradientTolerances)
-tao_max_its <2000>: Stop if iteration number exceeds (TaoSetMaximumIterates)
-tao_max_funcs <4000>: Stop if number of function evaluations exceeds (TaoSetMaximumFunctionEvaluations)
-tao_fmin <-1e+30>: Stop if function less than (TaoSetFunctionLowerBound)
-tao_steptol <0>: Stop if step size or trust region radius less than (TaoSetTrustRegionRadius)
-tao_trust0 <1e-06>: Initial trust region radius (TaoSetTrustRegionRadius)
-tao_lmmax <5>: Maximum number of vector pairs to use in limited memory variable metric matrix (TaoSetLMVMSetSize)
-tao_view_hessian: view Hessian after each evaluation (None)
-tao_view_gradient: view gradient after each evaluation (None)
-tao_view_jacobian: view jacobian after each evaluation (None)
-tao_view_constraints: view constraint function after each evaluation (None)
-tao_cancelmonitors: cancel all monitors hardwired in code (TaoClearMonitor)
-tao_monitor: Use the default convergence monitor (TaoSetMonitor)
-tao_smonitor: Use short monitor (None)
-tao_vecmonitor: Plot solution vector at each iteration (TaoVecViewMonitor)
-tao_vecmonitor_update: plots step direction at each iteration (TaoVecViewMonitorUpdate)
-tao_fd: use finite differences for Hessian (TaoDefaultComputeHessian)
-tao_xmonitor: Use graphics convergence (TaoPetscXMonitor)

more information about these options can be found in the TAO manual

#Time step options ————————————————-
-ts_max_steps <5000>: Maximum number of time steps (TSSetDuration)
#ignored
-ts_init_time <0>: Initial time (TSSetInitialTime) (unit: ns)
-ts_init_time 0.0
-ts_max_time <5>: Time to run to (TSSetDuration) (unit: ns)
-ts_max_time 1e99
-ts_dt <0.020944>: Initial time step (TSSetInitialTimeStep)
-ts_monitor: Monitor timestep size (TSDefaultMonitor)
-ts_xmonitor: Monitor timestep size graphically (TSLGMonitor)
-ts_vecmonitor: Monitor solution graphically (TSVecViewMonitor)
-ts_type TS method:(one of) euler beuler crank-nicholson pseudo pvode gbeuler (see manual page TSSetType)

PVODE ODE solver options
-ts_pvode_type <bdf> (one of) bdf adams
-ts_pvode_type bdf
-ts_pvode_gramschmidt_type <unmodified> (one of) modified unmodified
#ignored
-ts_pvode_atol <1e-06>: Absolute tolerance for convergence (TSPVodeSetTolerance)
-ts_pvode_atol 1e-6
-ts_pvode_rtol <1e-06>: Relative tolerance for convergence (TSPVodeSetTolerance)
-ts_pvode_rtol 1e-6
-ts_pvode_linear_tolerance <0.05>: Convergence tolerance for linear solve (TSPVodeSetLinearTolerance)
-ts_pvode_linear_tolerance 0.05
-ts_pvode_gmres_restart <5>: Number of GMRES orthogonalization directions (TSPVodeSetGMRESRestart)
#ignored
-ts_pvode_not_exact_final_time: Allow PVODE to stop near the final time, not exactly on it (TSPVodeSetExactFinalTime)
#ignored

additional PVODE parameters

maxl: maximum Krylov dimension
-maxl 300
minimum absolute value of step size allowed (ns)
-mintimestep 0.0
maximum absolute value of step size allowed (ns)
-maxtimestep 1e99
maximum lmm order to be used by the solver
Default (=max.) = 12 for ADAMS, 5 for BDF
-maxorder 2
set preconditioning type
0: none
1: jacobi
2: band-block-diagonal (not implemented, yet)
-precon 0

choose linear solver and set tolerance for psolve
gmres and bcgs are usually a good choice

-psolve_ksp_type gmres
-psolve_ksp_atol 1e-7
-psolve_ksp_rtol 0.01

more information about these options can be found in the PVODE manual

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_pylibraries/doc.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

Example: Utilizing Python Libraries

Rather than providing scripting capabilities via a proprietary
programming language (as many other simulation utilities do), |Nmag|
is built on top of the Python library and as such allows tight
integration with other Python software. This means in particular
that functionally advanced packages such as
Scientific Python <http://www.scipy.org>’:ref:`_ can be utilized for data
generation, analysis, and post-processing.

Despite |Nmag| being a MPI-based parallel application, it behaves like
any ordinary Python library towards the user and neither requires any
experience in parallel programming nor imposes any semantic
restrictions on when and how to use certain operations. This makes it
in particular possible to let existing implementations of algorithms
which never were written with parallelism in mind to directly drive
micromagnetic simulations.

Here, we give a toy example that demonstrates this concept: the
physical setup is that of a ferromagnetic rod directed along the
z-axis which is subjected to a linearly polarized electromagnetic
wave. The direction of the electric field matches the axis of the
rod. In order to simplify the physical content of the problem, we
assume the conductivity of the ferromagnet to be sufficiently small so
that the magnetic field induced by the current along the rod which is
caused by the wave’s electric field can be neglected. What then
remains is the reaction of a magnetic rod to a periodically changing
externally applied magnetic field of fixed frequency. We combine
|Nmag|‘s micromagnetic simulation capabilities with tools provided by
the `Scientific Python’ library to automatically determine the
resonance frequency.

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/nanopillar.png
pinned electric
moment Current — pinned
moment

T T/~

of
~

_images/fd.png
An

M‘

)/ ,

Do

_images/periodic_mesh.png
Y

15 0-4.50

_images/nanodot_hyst.png
M/ Ms

05

nmag —=—

-1e+06

-500000

0
Applied field (A/m)

500000

10406

example2/data_M.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/nanodot_comparison_hyst.png
M/ Ms

05

B e]

-200

-150 -100 -50 0
Applied field (kA/m)

50

100

150

200

_images/m_of_t.png
(/¥ ,04) uonesneuBew abeisAE

time (ns)

_images/data_M_OOMMF.png
Magnetisation (A/m)

8e+05

>
&
2
=3
o

4e+05 —

2e+05—

— ™,
— M
v
— ™,
© OOMMF

_images/bar_initial_M.png

example_hysteresis_disk/plot_head.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

1000000 0.9995058139817
1000000 0.9995058139817

900000 0.9994226410102
900000 0.9994226410102
800000 0.9993139080655

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/nmaglogo500.png

_images/larmor_plot.png
n

12

£0

“data.txt” u ($1/1e-12)

@ © - ~
< < < <

0.2 F
0.4l
0.6 |

UOTIESTIPUBEN PISTEUIOU JO UBUOAWOD X

o8 |

150 200 250 300
Simulation time

100

50

_images/nanodot_evo.png
M /M,

05k

05

magpar

-250

Applied field (kA/m)

50

example1/example1_sphere.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

Example 1: Demag field in uniformly magnetised sphere

This example computes the demagnetisation field in a uniformly
magnetised sphere. We know, of course, that the demag field has to
have the opposite direction to the magnetisation, and a magnitude of
1/3 of the magnetisation in this special case.

When using finite element calculations, a crucial (and non-trivial)
part of the work is the `finite element mesh generation`_. We provide
a very small mesh for this example sphere1.nmesh.h5 which was generated with
Netgen_. It describes a sphere of radius 10nm.

Using this, we can write the following nmag script with name
sphere1.py:

To execute this script, we have to give its name to the nsim_
executable, for example (on linux):

user@host user> nsim sphere1.py

Let’s discuss the sphere1.py script step by step.

Importing nmag

First we need to import nmag, and any subpackages of nmag that we need (this is just the SI object).

Creating the simulation object

Next, we need to create a simulation object using nmag.Simulation().

Defining (magnetic) materials

After having imported the nmag module into Python’s workspace and
after creating the simulation object sim, we need to define a
material using nmag.MagMaterial. We are giving it a name
(string) which is here "Py" and we are assigning a
saturaration magnetisation and an exchange coupling strength. This
name of the material chosen here plays an important role as all the
`Fields and Subfields`_ will be named taking into account
this name. The output files will also use that name to label output
data.

All data input and output within nmag happens in SI units by
default. To avoid ambiguity here but simultanouesly provide
flexibility in the choice of input and output units, an `SI object`_
is provided. This has to be used when defining the material parameters
(and in other places). We thus express the saturation magnetisation in
Ampere per metre (Ms=SI(1e6,"A/m")) and the exchange coupling
constant (often called A in micromagnetism) in Joules per metre
(exchange_coupling=SI(13.0e-12, "J/m")).

Loading the mesh

The next step is to load the mesh. The first argument is the file name
(sphere1.nmesh.h5). The second argument is a list of tuples. In
this example we have a list with one element, and this element is
("sphere", Py). The first part of the tuple ("sphere") is a string (of
the user’s choice) and this is the name given to the mesh region 1
(i.e. the space occupied by all simplices that have the region id 1
in the mesh file).

[This information is currently only used for debugging purposes (such
as when printing the simulation object).]

The second part of the tuple is the MagMaterial that has been
created before and which contains the material properties for this
material. In this example, we have assigned the material for PermAlloy
to a variable called Py.

[If we had two different materials within the same simulation, then the
list would have two entries, i.e. ("sphere", [Dy,Fe2]) in a
simulation that takes into account Dy moments and Fe2 moments
individually.]

The third argument to load_mesh is an `SI object`_ which defines
what real distance should be associated with the length 1.0 as given
in the mesh file. In this example, the mesh has been created in nano
metres, i.e. the distance 1.0 in the mesh file should correspond to 1
nanometre in the real world. We thus use an SI object of 1nm.

[This defines the internal simulation units.]

Setting the initial magnetisation

To set the initial magnetisation, we use the sim.set_m()
method. The field m describes the normalised magnetisation whereas

the field M contains the magnetisation with it’s proper magnitude
(i.e. |M| = Ms). For this simulation, we provide a unit vector
pointing in x-direction to indicate that we would like the initial
magnetisation to point in plus x direction. (We could provide a vector
with non-normalised magnitude, which would be normalised
automatically. This is convenient for, say, magnetisation pointing 45
degrees between x and y axis: [1,1,0])

Setting the external field

We set the external field using sim.set_H_Ext(). In contrast to
sim.set_m(), this methods takes two arguments. The first defines
numerical values for the direction and magnitude of the external
field. The second determines the meaning of these numerical values
using an SI object. Suppose we would like an external field of 1e6A/m
acting in the y-direction, then the command would read:
sim.set_H_ext([0,1e6,0],SI(1,"A/m")).

Computing the demag field

The sim.advance_time(SI(0,"s")) command is used to compute the demag
field, the exchange field, etc and all associated energies, based on
the geometry, the magnetisation configuration, and the external field.

If we study dynamical systems, then a call sim.advance_time(SI(1e-12,"s")) would compute the time development of the system for 12 pico seconds. For this example, we use the advance_time_ method simply to populate all the fields based on the initial values set for the magnetisation.

Extracting and saving data

We have three different ways of extracting data from the simulation

		saving averaged values of fields (which can be analysed later)

		saving spatiallialy resolved fields (which can be analysed later)

		extracting field values at arbitrary positions from within the
running program

In the sphere1 example discussed here, we use all three methods and
will discuss these in more detail now:

Saving averaged data

The command sim.save_data_table() writes averages of all fields
(see `Fields and subfields`_) into a text file. This file is best
analysed using the ncol_ tool but can also just be read with a text
editor. The format follows OOMMF’s odt fileformat: every row
corresponds to one snap shot of the system (see save_data_table_).

The first and second line in the file are headers that explain the
entity and the units of the entity saved in the corresponding column.

The ncol_ tool allows to extract particular columns easily so that
these can be plotted later (useful for hysterises loop studies). In
this example where have only one “timestep”, there is only one row of
data in this file and we shall not explore this further here.

Extracting arbitrary data from the running programe

The line H_demag = sim.get_H_demag([x,0,0]) obtains the
demagnetisation field at position (x,0,0). By default, the position is
specified in SI units, and the data returned is also expressed in SI
units.

The for-loop in the program (which changes x to range from
-10*1e-9 to 10*1e-9 in steps of 1e-9) produces the following output

x = -1e-08 : H_demag = None
x = -9e-09 : H_demag = [-329655.76203912671, 130.62999726469423, 194.84338557811344]
x = -8e-09 : H_demag = [-329781.46587966662, 66.963624669268853, 137.47161381890737]
x = -7e-09 : H_demag = [-329838.57852402801, 181.46249265908259, 160.61298054099865]
x = -6e-09 : H_demag = [-329899.63327447395, 131.06488858715838, 71.383139326493094]
x = -5e-09 : H_demag = [-329967.79622912291, 82.209856975234786, -16.893046828024836]
x = -4e-09 : H_demag = [-329994.67306536058, 61.622521557150371, -34.433041910642359]
x = -3e-09 : H_demag = [-329997.62759666931, 23.222244635691535, -65.991127111463769]
x = -2e-09 : H_demag = [-330013.90370482224, 10.11035370824321, -61.358763616681067]
x = -1e-09 : H_demag = [-330023.50844056415, -6.9714476825652287, -54.900260456937708]
x = 0.0 : H_demag = [-330030.98847923806, -26.808832466764223, -48.465748009067141]
x = 1e-09 : H_demag = [-330062.38479507214, -38.660812022013424, -42.83439139610747]
x = 2e-09 : H_demag = [-330093.78111090627, -50.512791577262625, -37.2030347831478]
x = 3e-09 : H_demag = [-330150.72580001026, -64.552170478617398, -23.120555702674721]
x = 4e-09 : H_demag = [-330226.19050178828, -77.236085707456397, -5.5373829923226916]
x = 5e-09 : H_demag = [-330304.59300913941, -90.584413821813229, 14.090609104026118]
x = 6e-09 : H_demag = [-330380.1392610991, -115.83746059068679, 37.072085708324757]
x = 7e-09 : H_demag = [-330418.85831447819, -122.47512022500726, 62.379121138009992]
x = 8e-09 : H_demag = [-330476.40747455234, -110.84257225592108, 108.06217226524763]
x = 9e-09 : H_demag = [-330500.20126762061, -68.175725285038382, 162.46166752217249]
x = 1e-08 : H_demag = [-330517.86675206106, -24.351273685146875, 214.40344001233677]

At position -1e-8, there is no field defined (this is just
outside the mesh) and therefore the value None is returned.

We can see how the demagnetisation field varies slightly throughout
the sphere. The x-component is approximately a third of the
magnetisation, and the y- and z-components are close to zero (as would
be expected for a perfectly round sphere).

Saving spatially resolved data (the fields)

The command sim.save_fields(all=True) will save all fields (see
`Fields and subfields`_) spatially resolved for the current
configuration into a file with name sphere1_dat.h5.
The call sim.save_fields() will only save the magnetisation field
(to store disk space). The data in this file is a compressed binary
format (build on the hdf5_ standard) and can be extract and converted
later using the nmagpp_ tool.

For example, to create a vtk_ file (for visualisation purposes) from
the saved data, we can use:

nmagpp --vtk sphere1.vtk sphere1

where sphere1.vtk is the name of the vtk file that is to be
generated.

Once this is executed, we can visualise the data. For this manual we
use MayaVi_ as the visualisation tool for vtk files but there are
others avialable (see vtk_).

We start MayaVi and load the vtk data file with mayavi -d
sphere1.vtk. Using MayaVi’s menus, we can add a “VelocityVector”
module to display the magnetisation:

[image: example1/../images/sphere1_h5_m.png]
The magnetisation is pointing in the x-direction (because we have set
the initial magnetisation like this using the sim.set_m([1,0,0])
command).

The demagnetisation field should point in the opposite direction of
the magnetisation. Let’s first plot a colour-coded plot of the value
of the scalar magnetic potential phi from which the demag field is
computed by taking the negative gradient:

[image: example1/../images/sphere1_h5_phi.png]
We can see that the potential varies along the x-direction. The legend
at the bottom of the figure shows the colour code used. We can also
see from the title that the units of the potential phi are Ampere
(this is the <A>).

Unless the user specifies a particular request for the units of data,
the following rules apply:

		position are given in the same coordinates as the mesh coordinates
(that is why the x, y and z axis have values going from -10 to 10).

		all field data is given in SI units.

The next plot shows the demag field (the vectors) together with
isosurfaces of the magnetic potential:

[image: example1/../images/sphere1_h5_demag.png]
It can be seen that the isosurfaces are completely flat planes
(i.e. the potential is changing only along x) and the demagnetisation
field is perpendicular to the isosurfaces. The colorbar on the left
refers to the demagnetisation field which is expressed in Ampere per
metre as can be seen from the label <A/m>.

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_cubic_anis/oommf/cube_hext_vs_m.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 # ODT 1.0
Table Start
Title: mmArchive Data Table, Fri Aug 24 20:55:08 BST 2007
Columns: # Oxs_UZeeman::Bx Oxs_TimeDriver::Mx
Units: # mT A/m

0 0
1 23498.98581818331
2 47048.67195294636
3 70707.3986524931
4 94529.83918905807
5 118576.8639857576
6 142916.943133966
7.000000000000001 167622.682716999
8 192779.4630956562
9 218487.2629257648
10 244868.8672399517
11 272069.9232265818
12 300279.659055543
13 329746.6680739537
14 360811.0617719989
15 393967.0473671699
16 429977.2529514048
17 470149.1082721257
18 517139.6245627891
19 578596.2252518293
20 1698430.496009755
21 1698431.219395379
22 1698431.938242988
23 1698432.674035582
24 1698433.385852377
25 1698434.096316932
26 1698434.813461647
27 1698435.531510342
28 1698436.250290656
29 1698436.969092815
30 1698437.687993739
31 1698438.406813883
32 1698439.125330412
33 1698439.843299654
34 1698440.560592202
35 1698441.277166724
36 1698441.99303023
37 1698442.708200843
38 1698443.422657852
39 1698444.136495217
40 1698444.849805413
41 1698445.562597826
42.00000000000001 1698446.274912159
43.00000000000001 1698446.986770941
44 1698447.698199272
45 1698448.409206665
46 1698449.119792157
47 1698449.829946073
48 1698450.539654894
49 1698451.248902072
50 1698451.957674693

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_cubic_anis/cube_hext_vs_m.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

0 -25.35456926062
0 -25.35456926062

795.7747114806 23066.66148455
795.7747114806 23066.66148455
1591.549422961 46378.47994321
1591.549422961 46378.47994321
2387.324134442 70119.34374008
2387.324134442 70119.34374008
3183.098845922 93600.84568926
3183.098845922 93600.84568926
3978.873557403 117399.6054034
3978.873557403 117399.6054034
4774.648268883 141357.7647153
4774.648268883 141357.7647153
5570.422980364 165964.3215054
5570.422980364 165964.3215054
6366.197691844 190909.4826557
6366.197691844 190909.4826557
7161.972403325 216232.689932
7161.972403325 216232.689932
7957.747114806 242240.643362
7957.747114806 242240.643362
8753.521826286 269036.6854624
8753.521826286 269036.6854624
9549.296537767 296675.4474042
9549.296537767 296675.4474042
10345.07124925 325343.3181224
10345.07124925 325343.3181224
11140.84596073 356070.9132261
11140.84596073 356070.9132261
11936.62067221 388537.0966342
11936.62067221 388537.0966342
12732.39538369 423895.0066664
12732.39538369 423895.0066664
13528.17009517 462880.7387315
13528.17009517 462880.7387315
14323.94480665 508242.8160242
14323.94480665 508242.8160242
15119.71951813 566290.3181479
15119.71951813 566290.3181479
15199.29698928 566106.1742286
15199.29698928 566106.1742286
15278.87446043 580146.6507743
15278.87446043 580146.6507743
15358.45193157 585103.1970301
15358.45193157 585103.1970301
15438.02940272 594703.3761401
15438.02940272 594703.3761401
15517.60687387 603250.3975489
15517.60687387 603250.3975489
15597.18434502 612829.5008219
15597.18434502 612829.5008219
15676.76181617 623259.0346605
15676.76181617 623259.0346605
15756.33928732 635975.5245743
15756.33928732 635975.5245743
15835.91675846 651285.6476956
15835.91675846 651285.6476956
15915.49422961 672917.0101478
15915.49422961 672917.0101478
15995.07170076 1697867.314047
15995.07170076 1697867.314047
16074.64917191 1697867.462136
16074.64917191 1697867.462136
16154.22664306 1697867.592157
16154.22664306 1697867.592157
16233.8041142 1697867.713896
16233.8041142 1697867.713896
16313.38158535 1697867.834395
16313.38158535 1697867.834395
16392.9590565 1697867.951066
16392.9590565 1697867.951066
16472.53652765 1697868.073789
16472.53652765 1697868.073789
16552.1139988 1697868.189695
16552.1139988 1697868.189695
16631.69146994 1697868.30298
16631.69146994 1697868.30298
16711.26894109 1697868.419351
16711.26894109 1697868.419351
16711.26894109 1697868.43155
16711.26894109 1697868.43155
17507.04365257 1697869.401929
17507.04365257 1697869.401929
18302.81836405 1697870.272671
18302.81836405 1697870.272671
19098.59307553 1697871.077068
19098.59307553 1697871.077068
19894.36778701 1697871.973929
19894.36778701 1697871.973929
20690.14249849 1697872.897173
20690.14249849 1697872.897173
21485.91720998 1697873.596352
21485.91720998 1697873.596352
22281.69192146 1697874.46624
22281.69192146 1697874.46624
23077.46663294 1697875.321463
23077.46663294 1697875.321463
23873.24134442 1697876.204639
23873.24134442 1697876.204639
24669.0160559 1697877.127492
24669.0160559 1697877.127492
25464.79076738 1697877.971931
25464.79076738 1697877.971931
26260.56547886 1697878.790052
26260.56547886 1697878.790052
27056.34019034 1697879.665771
27056.34019034 1697879.665771
27852.11490182 1697880.494016
27852.11490182 1697880.494016
28647.8896133 1697881.308369
28647.8896133 1697881.308369
29443.66432478 1697881.969668
29443.66432478 1697881.969668
30239.43903626 1697882.831093
30239.43903626 1697882.831093
31035.21374774 1697883.875682
31035.21374774 1697883.875682
31830.98845922 1697884.722234
31830.98845922 1697884.722234
32626.7631707 1697885.510671
32626.7631707 1697885.510671
33422.53788218 1697886.382734
33422.53788218 1697886.382734
34218.31259366 1697887.117595
34218.31259366 1697887.117595
35014.08730514 1697888.028742
35014.08730514 1697888.028742
35809.86201663 1697888.88438
35809.86201663 1697888.88438
36605.63672811 1697889.543222
36605.63672811 1697889.543222
37401.41143959 1697890.50255
37401.41143959 1697890.50255
38197.18615107 1697891.154515
38197.18615107 1697891.154515
38992.96086255 1697892.092866
38992.96086255 1697892.092866
39788.73557403 1697893.058468
39788.73557403 1697893.058468

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/magnetisation.png

_images/performance.png
Memory [MB]

Setup Time [s]

1800
1600
1400
1200
1000
800
600
400
200

800

600

400

200

full BEM
H-Matrix -

4000

8000

12000 16000
Number of Volume Nodes

20000

24000

28000

_images/nanodot-5.png
Py<> (X component)

0429

m.

0714 1.00

0429

-0.143 0.143

-0.714

-1.00

_images/after.png

_images/data_M.png
8e+05

Be+05

4e+05

Magnetisation (A/m)

2e+05

_images/nanodot-6.png
m_Py<> (X component)
-1.00 -0714 -0429 -0.143 0.143 0429 0714 1.00

_images/eq_v_d.png
j Similation.set current density
P 11g polarisation
1lgxi

o

u

is the norm of the current density,
is the degree of polarization of the spin current,
is the degree of non adiabadicity.

is the Bohr magneton,

is the electron charge, e is positive : e

_images/bar_relax_data_M.png
8e+05
€ 6e405
&
<
]
3 4e+05 M
4 '
5 —M
$ — M
= s z
4
. I . I . I . I
0 2e-10 4e-10 6e-10 8e-10

time (s)

_images/real-space.png
time (ps)

-300

y component of magnetisation variation

-200

-100 0 100
position in axis (nm)

200

300

0.001

0.000¢8
0.0006
0.0004
0.0002

-0.0002
-0.000¢
-0.000€
-0.000¢
-0.001

_images/switching-field-4_92-nmag-netgen.png
Mz (A/m)

1.5e+06

1e+06

500000

~500000

~1e+06

~1.5e+06

nmag - fixed time step 1 femtosec — applied field: 4.92e6 A/m

4K
4K
4K
2K
2K
2K

(a) —+—
(b) ——
(c) —*—
(a) —=—
(b) —=—
(c) —=—
1K

le-10

1.2e-10

1.4e-10

_images/hysteresis1.png
Stoner-Wohlfarth -

-1000 -500 0 500 1000
Applied field (kA/m)

_images/initial_magn.png

_images/sphere1_h5_demag.png
H_demag<A/m>

3.33e+05

-9.93

2.86e+05
2.38e+05 10.’19 0

1.90e+05

1.43e+05

%785

0.00 9.96
phi<A>

-0.00328 0458 0482 0.00142 0.00236 0.00330

_images/bar_final_M.png
30.0

M_Py<A/m> (X component)
-2.15e+05 -1.44e+05 -7.20e+04 -311. 7.14e+04 1.43e+05 2.15e+05 2.86e+05

_images/nanodot-1.png
m_Py<> (X component)
0.143 0.143 0429

0714

1.00

_images/evolution-2.png
m_Py<> (Y componenf)
0.00 0.143 0286 0429 0571 0714 0857 1.00

_build/html/_downloads/resultsummary.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 0.1 88 94.6917
0.01 114 92.0796
0.001 119 66.3566
0.0001 182 46.0987
1e-05 356 62.3658
1e-06 740 120.807

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/mesh3.png

example_2Dperiodicity/plot.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 set term postscript enhanced color
set out ‘no_periodic.ps’
set xlabel ‘Applied field’
set ylabel ‘M / Ms’
plot ‘periodic2_dat.ndt’ u 1:9 ti ‘Mx’ w lp, ‘periodic2_dat.ndt’ u 1:10 ti ‘My’ w lp, ‘periodic2_dat.ndt’ u 1:11 ti ‘Mz’ w lp

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/nanodot1_mesh.png
1.00 1.00

_build/localmedia/_downloads/resultsummary.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 0.1 88 94.6917
0.01 114 92.0796
0.001 119 66.3566
0.0001 182 46.0987
1e-05 356 62.3658
1e-06 740 120.807

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_build/html/_downloads/data_M.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/periodic1_out_of_axis.png
Demag field

220000

500000

480000

460000

440000

420000

400000

380000

360000

340000

320000

nmag ——
ocommf x
0 10 20 30 40 50 60 70 80

‘copies

90

_build/json/_downloads/resultsummary.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 0.1 88 94.6917
0.01 114 92.0796
0.001 119 66.3566
0.0001 182 46.0987
1e-05 356 62.3658
1e-06 740 120.807

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/vis1.png

_build/localmedia/_downloads/data_M.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_build/json/_downloads/data_M.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/bar_mag_x.png
nmag

1.5

(usy 4o SuOTITTW)

£ -0.5

-1.5

500

400

300

200

100

x {nm)

_images/sphere3partitions.png
cpu_id_<>
000 0286 0571 0857 1.14 1.43

_images/mesh1.png
S

Egﬂ%ﬂmﬁﬁmm
gﬁggﬁmmmmmga
ﬁv‘,‘gﬁ"%ﬂ%%%%i
ﬂhuv;ﬂiiﬂﬂiﬂmvmﬁn

_images/hysteresis.png
M, Mg

05

KKK K KKK KKK KK AR

elipsoid example

18406

-500000 o
Applied field H, (A/m)

500000

16+06

_images/spheremesh.png

_images/no_periodic.png
Mx ——

X
04l
2 X
= 3
02 *
oy
X X0
o Xm*li’?‘ WRNUSURSmISSISSSSEST————
X
02 1
04 . L . L L . L
0 se-11 1e10 1.5e-10 2e10 2510 3e-10
time (s)

35610 4e-10

_images/eq_zhangli_llg_d.png
M Simulation.setm is the magnetisation,
H Simulation.setHext is the effective magnetic field,
Mot Ms is the saturation magnetisation,
5 11g_gamma G is the gyromagnetic ratio,
11g damping is the damping parameter,

o
i-v derivative along j, the direction of the current,

_images/thinfilm130.png
188
z

\’3‘»’6“90
magnetisation x component

-1.00 -0.875 -0.750 -0.625 -0.500 -0.375 -0.250 -0.125 0.00

X

_images/periodic1_in_axis.png
Demag field

390000

300000

250000

200000

150000

100000

50000

nmag ——
ocommf x

10

20

30

40

‘copies

50

60

70

80

90

example_tolerances/resultsummary.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 0.1 88 94.6917
0.01 114 92.0796
0.001 119 66.3566
0.0001 182 46.0987
1e-05 356 62.3658
1e-06 740 120.807

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/step7.png
m_Py<> (X component)
000 0.143 0286 0429 0571 0.714 0857 1.00

example_tolerances/resultsummary_rst.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

		tol
		steps
		CPU time (s)
		CPU time per step (s)

		0.000001
		740
		120.81
		0.163

		0.000010
		356
		62.37
		0.175

		0.000100
		182
		46.10
		0.253

		0.001000
		119
		66.36
		0.558

		0.010000
		114
		92.08
		0.808

		0.100000
		88
		94.69
		1.076

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-close.png

_images/cylinder.png

_images/steps_illustrated.png

_images/nanodot_mesh.png
1.00 1.00

_images/plot2.png
-60000

1.4e-10 1.6e-10 1.8e-10 2e-10
time (s)

search.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/evolution-1.png
m_Py<> (Y componenf)
0.00 0.143 0286 0429 0571 0714 0857 1.00

_images/plot1.png
8e+05

Be+05

4e+05

M_Py (A/m)

2e+05

1.5e-10
time (s)

2e-10

2.5e-10

_images/evolution-3.png
m_Py<> (Y componenf)
0.00 0.143 0286 0429 0571 0714 0857 1.00

_images/m_of_t1.png
>

M
Py
M

ue

o o - - o o

(/¥ ,04) uonesneuBew abeisAE

time (ns)

04 1
05

_images/plot3.png
M_Py (A/m)

8.55e+05

8.54e+05

8.53e+05

8.52e+05

1.8e-10

2e-10

2.2e-10

2.4e-10
time (s)

2.6e-10

2.8e-10

3e-10

_images/bar_relax2_data_M.png
8e+05
€ 6e405
&
<
]
3 4e+05 M
4 '
5 —M
$ — M
= s z
4
. I . I . I . I
0 2e-10 4e-10 6e-10 8e-10

_images/bar30_30_100.png
o

_images/relaxation_m.png
0.8

0.6

0.4

0.2

Full M,
Full M
Full M)
HLib My, -
HLib M;, -
HLib M -

e

Time [s]

2.5e-09

_images/switch-snapshot-2K-netgen-mesh-4_92.png
m_NdFeB<> (Zcomponent)
-1.00 -0.714 -0429 -0.143 0.143 0429 0714 1.00

_images/pinned_core.png
=4
]
N
n
b
S
=
)
)
S
-
N
b
S
o
N
X
S
©
X
N
S
L)
<
=
S
)
=]
S

_images/vis3.png

_images/coin.png
02

0.4

03

0.1

0.3

15

05

sy

05|

0.4

15

_images/mesh.png

_images/nmag-architecture500.png
(pay1dwoo |je)
uopnoaxe |ajeled

SUNDIALS

PETSC

_images/vis4.png

_images/m-end1.png
y component of magnetisation
0.00 0.143 0.286 0.429 0.571 0714 0.857 1.00

_images/nanodot-4.png
Py<> (X component)

0429

m.

0714 1.00

0429

-0.143 0.143

0.714

-1.00

_images/bar_mag_x_compared.png
M.z (millions of A/m)

1.5

-1.5

nmag ——
oommf —+—
analytical ——

220

230

240

250
x {nm)

260

270

280

_images/smallsphere.png

_images/before.png

_images/sphere1_h5_m.png
-9.93

_images/fe.png

example_thermal_cube/doc.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

Example: Thermal Effects

|nmag| supports the simulation of thermal effects by adding a
stochastically fluctuating field with proper variance to the effective
field, following “Micromagnetics and the Microstructure of
Ferromagnetic solids” (section 14.6) by [Kronmuller]. This feature is
enabled by specifying a temperature when creating the Simulation
object. Since the thermal noise renders |nmag|‘s standard time
integrator `sundials`_ unusable, it is using a fixed time step and the
Heun method for the time integration
[Schrefl_IEEE_TransMag_36_3189]. Another complication in these kind
of studies of thermal fluctuations is that the error of the time
integration cannot be reliably measured (as the stochastic noise
field is adding a stochastic term to the equations of motions) and
thus a dynamic adaption of the time step is impossible. Instead, one
needs to determine a fixed time step, and then run the simulation with
this (the timestep to be used is passed via the thermal_delta_t
parameter to the Simulation object).

The same considerations and limitations of the stochastic simulation
of thermal effects apply to the OOMMF “thetaevolve” extension module
(available at
http://www.nanoscience.de/group_r/stm-spstm/projects/temperature/download.shtml).

Here we provide an example study of the dynamics of a thermally
assisted switching process. The geometry under investigation is a cube
with 8nm edge length. Here is a snap shot of the thermal fluctuations
of the magnetisation, which is on average aligned in the +z direction
but with small deviations in x and y due to a small temperature of 2K:

[image: ../_images/random-noise-netgen-mesh.png]

The zero temperature case

From the figure above, we can see the geometry under consideration: a
cube of NdFeB with parameters Ms=1.6 Tesla/mu0, A=7.3e-12 J/m, and
uniaxial anisotropy constants K1= 4.3e6, J/m^3 and K2=0.65e6 J/m^3
(Parameters from [Kronmuller]) with edge length 8nm in all three
directions. (We have set K2, which should have a small effect, to zero
to be able to carry out comparitive studies with OOMMF). The easy axis
is oriented in the [0.01,0.01,1] direction, i.e. along the z-axis
with a slight deviation to break the cubic symmetry. The applied field
is acting exactly in the z-direction.

Initially, we determine the field at which the magnetisation switches
from +z to -z without thermal fluctuations. Using nmag at 0K (i.e.
with the usual `sundials`_ time integrator), we find a switching field
of 4.94e6 A/m. This script thermal-0K.py
<../example_thermal_cube/thermal-0K.py>_ will repeat the calculation
(with a varying step size in the applied field) up to the switching
field:

import nmag
from nmag import SI, si, at

create simulation object
ps = SI(1e-12, "s")

sim = nmag.Simulation()

define magnetic material (data from Kronmueller's book)
NdFeB = nmag.MagMaterial(name="NdFeB",
 Ms=1.6*si.Tesla/si.mu0,
 exchange_coupling=SI(7.3e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0.01,0.01,1],
 K1=SI(4.3e6, "J/m^3"),
 K2=SI(0*0.65e6, "J/m^3")
)
)

sim.load_mesh("cube.nmesh.h5", [("cube", NdFeB)], unit_length=SI(1.0e-9,"m"))

sim.set_m([-0.01,-0.01,1])

Hs = nmag.vector_set(direction=[0.,0.,1.],
 norm_list=[-1,-2, [], -4, -4.2, [], -4.9, -4.91, [], -4.94],
 units=1e6*SI('A/m')
)

sim.hysteresis(Hs,
 save=[('fields', 'restart', at('convergence'))]
)

The hysteresis function takes this line:

norm_list=[-1,-2, [], -4, -4.2, [], -4.9, -4.91, [], -4.94]

and will translate it to the magnitudes of the applied field of -1,
-2, -3, -4, -4.2, -4.4, -4.6, -4.8, -4.9, -4.91, -4.92, -4.93, -4.94
(because the [] autoexpands into a sequence of the same step size
as the last step) in units of 10^6 A/m.

For every stage completed, the averages and field are saved due to this line:

save=[('fields', 'restart', at('convergence'))]

We will come back to that when we extract the magnetisation at an
applied field of -4.92e6 A/m from the thermal-0K_dat.h5 data file
that the thermal-0K.py script produces.

Because the magnetisation is switching at 4.94e6 A/m, we expect that
it will not switch at a somewhat smaller value, say 4.92e6 A/m, but
that increasing the temperature will assist and enable this switching
process. This is what we will study in this example.

The mesh <../example_thermal_cube/cube.nmesh.h5>_ we use has been created with `Netgen`_:

[image: ../_images/netgen-mesh.png]

Choosing the time step

As outline in the introduction above, we need to choose a fixed time
step size. For the simulations shown here, we have chosen 1e-15s
(i.e. one femto second) as a compromise between accuracy (calling for
small time steps) and practicability (calling for large time
steps). The time step is in particular chosen such that when we
include the thermal fluctuations the max angle stays below 45 degrees
(see Max angle requirements). We have found that for the
temperatures used in this example, this is the case for a time step of
1e-15s.

Finite temperatures

We perform a simulation where the magnetisation is pointing up (i.e.
in the +z direction) and the applied field is pointing down. The
applied field is chosen to have a magnitude of 4.92e6 A/m which is
just below the switching field of 4.94e6A/m. We should find that the
switching process will take place at sufficiently high temperatures,
and that the switching is likely to take place the faster the higher
the temperature is.

For each simulation, we have chosen the initial magnetisation
configuration to be taken from the The zero temperature case at an
applied field of 4.92e6 A/m. We show one script
<../example_thermal_cube/thermal-2K.py>_ that carries out this
simulation at a temperature of 2K:

import nmag
from nmag import SI, si

temperature = SI(2.0, "K")
ps = SI(1e-12, "s")
sim = nmag.Simulation(temperature=temperature,
 user_seed_T = 0,
 thermal_delta_t=0.001*ps)

define magnetic material (data from Kronmueller)
NdFeB = nmag.MagMaterial(name="NdFeB",
 Ms=1.6*si.Tesla/si.mu0,
 exchange_coupling=SI(7.3e-12, "J/m"),
 anisotropy=nmag.uniaxial_anisotropy(axis=[0.01,0.01,1],\
 K1=SI(4.3e6, "J/m^3"),\
 K2=SI(0*0.65e6, "J/m^3")))

load mesh
sim.load_mesh("cube.nmesh.h5", [("cube", NdFeB)], unit_length=SI(1.0e-9,"m"))

set initial magnetisation from the equilibrium configuration
with the field = 4.92e6 A/m which has id=19 (check with 'ncol thermal-0K id H_ext_2')
magn_from_file = nmag.get_subfield_from_h5file('thermal-0K_dat.h5','m_NdFeB',id=10)
sim.set_m(magn_from_file)

apply external field in -z direction
sim.set_H_ext([0,0,-4.92],unit=SI(1e6,'A/m'))

num_steps = 100
for n in range(0, num_steps):
 print "Step %i/%i" % (n,num_steps)
 sim.advance_time(n*ps)
 if (n % 5) == 0:
 sim.save_data(fields='all')
 else:
 sim.save_data()

We have carried out the simulation three times at 2K with different
random seeds (this is the user_seed_T argument in the constructor
of the Simulation object). We have carried out 3 further simulations
at 4K and one at 1K. The thermally assisted switching processes are
summarised in the next figure:

[image: ../_images/switching-field-4_92-nmag-netgen.png]
It can be seen that

		the switching takes place the sooner the higher the temperature

		for one temperature, there is some variation in the time when the actual
switching takes place (due to the stochastic nature of this
simulation technique).

We also show a snap shot of one of the reversal processes at 2K:

[image: ../_images/switch-snapshot-2K-netgen-mesh-4_92.png]

		[Kronmuller]		(1, 2) Kronm?ller “Micromagnetics and the Microstructure of Ferromagnetic solids” (Book)

		[Schrefl_IEEE_TransMag_36_3189]		Schrefl et al, “Langevin Micromagnetics of Recording Media Using Subgrain Discretization”, IEEE Transactions on Magnetics, Vol 36 (5), 3189

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_parameters/data_normal.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

0 608111.8318204 0 608111.8318204

5e-12 561608.9062278 95454.38861173 639924.4671857
1e-11 496752.8448758 176100.7026255 667773.5573243

		1.5e-11 419035.5523297 237119.5734791 694142.0481879

		2e-11 334303.7887739 276293.8730563 718739.5329036

		2.56078518661e-11 239067.3098825 294254.8832038 742630.7206941

		3e-11 170088.8729266 291101.2800379 758092.4080029

		3.589716019215e-11 91730.32455171 268478.6698052 774883.1429647

		
4e-11 49021.24813371 244388.3833649 784490.6213134

		4.5e-11 10551.08642225 210462.0514814 794492.3635437

		5e-11 -14165.74235217 175671.9500133 802997.8701006

		5.5e-11 -27404.01994485 143410.0659283 810242.6627561

		6e-11 -31957.63601657 115908.9310242 816385.6615681

6.5e-11 -30688.86746349 94311.93704127 821566.382519

7.05196227728e-11 -25644.36159866 77556.23048359 826326.8344655
7.522214608837e-11 -20414.33109559 68634.44065433 829708.5935873

8e-11 -15663.47622017 63714.0046409 832609.9041024

		8.5e-11 -12279.87266214 61875.56143227 835163.3322037

		9e-11 -11059.64252945 62169.51034571 837310.9266898

9.5e-11 -12130.40723324 63418.79788861 839130.2066099

		1.000986420377e-10 -15370.05333034 64658.94644206 840714.4533801

		
		1.05e-10 -20107.09733376 65094.27292903 842031.2707851

		1.1e-10 -26025.14201179 64300.83813618 843208.5131698

		1.15e-10 -32445.07338706 62018.2981775 844251.8620118

		1.2e-10 -38794.53205886 58229.76229986 845188.5793551

		1.250790775452e-10 -44679.56962714 52994.44772568 846051.3334281

		
1.3e-10 -49481.50159498 46842.10384765 846815.1428226

1.35e-10 -53213.91360021 39819.68740751 847527.9779152

		1.403742349569e-10 -55808.0180601 31797.51887435 848229.9876626

		
		1.45e-10 -56860.42124636 24805.36432824 848784.5377286

		1.5e-10 -56849.15078652 17435.53507046 849334.837363

1.55e-10 -55784.29639162 10487.58480502 849836.5830932

		1.601004682224e-10 -53799.64978661 4009.538645724 850301.2168795

		
		1.65e-10 -51228.56562706 -1530.971718091 850705.6493684

		1.7e-10 -48121.28580727 -6449.047045881 851079.4233648

		1.75e-10 -44697.06447412 -10624.43578133 851417.3830226

		1.8e-10 -41102.74552252 -14093.21156315 851723.0340266

		1.85e-10 -37455.44815062 -16916.37155197 851999.7236834

		1.9e-10 -33842.09029252 -19166.79438628 852250.5252027

		1.95e-10 -30322.10586766 -20921.40460322 852478.2423382

		2e-10 -26932.93799284 -22250.55475354 852685.3156355

		2.05e-10 -23690.1062581 -23226.69264567 852874.1178613

		2.1e-10 -20599.7408786 -23901.5779143 853046.2654461

2.15e-10 -17659.55303255 -24319.01320229 853203.4490615

		2.202686094134e-10 -14716.59710961 -24517.70559192 853354.4880843

		2.25e-10 -12203.04703958 -24508.05061597 853478.541361

2.301372160299e-10 -9606.958457053 -24313.87156992 853601.9541121
2.356975036522e-10 -6950.380189991 -23903.57339359 853723.5204077

2.4e-10 -5003.743302705 -23452.99785089 853809.7541405

2.45e-10 -2864.499947208 -22791.45218378 853902.0586515

		2.502081546682e-10 -782.3094186745 -21954.79388021 853989.926766

		
		2.55e-10 995.3767925752 -21062.57481841 854063.9352383

		2.6e-10 2701.702752575 -20018.6307491 854134.7971524

		2.656830511543e-10 4451.282923918 -18711.72959386 854208.0861605

		
2.7e-10 5640.136022151 -17646.46287724 854259.0198734

2.75e-10 6861.040505616 -16349.69218952 854313.3717499

		2.815983060505e-10 8218.711612718 -14565.6005965 854378.1808208

		2.85e-10 8807.696600805 -13625.29381817 854408.7565851

2.909062265295e-10 9653.127692623 -11978.63760941 854457.5911429
2.977744447624e-10 10365.26044413 -10071.26851185 854508.3050781

3e-10 10536.60692068 -9460.995959646 854523.4537655

3.055702786991e-10 10845.44283886 -7960.969676714 854558.8206289
3.114152199331e-10 10997.35301275 -6442.921755947 854592.3460306

		3.15e-10 11009.62898209 -5546.879885427 854611.2274151

		3.2e-10 10933.4057659 -4348.097657916 854635.6220533

		3.25e-10 10759.2991583 -3214.41139812 854657.9251293

		3.3e-10 10498.30125045 -2151.287794632 854678.2956879

		3.363935785537e-10 10054.47612902 -900.5310853676 854701.7744397

		
3.4e-10 9756.57636671 -250.6941656893 854713.8608905

3.45e-10 9295.700090405 582.6931584088 854729.3472013

		3.586507012849e-10 7823.888668318 2456.024589465 854765.0016019

		
3.6e-10 7666.02765031 2609.678321585 854768.0582881

		3.65e-10 7068.021722769 3130.46512262 854778.7352857

		3.7e-10 6454.939075334 3576.210286659 854788.4602092

3.75e-10 5833.834446482 3949.522327348 854797.3303576

		3.803058483092e-10 5173.152819166 4269.458229208 854805.8583719

		
		3.85e-10 4592.755281135 4490.490685011 854812.7092352

		3.9e-10 3983.868226097 4665.080398248 854819.3440312

		3.960601212856e-10 3265.212389908 4797.757913704 854826.561515

		
4e-10 2812.682522606 4840.749644413 854830.8359645

4.05e-10 2258.332262097 4849.890108149 854835.8082215

		4.103790827773e-10 1690.3061828 4807.451127231 854840.6374974

		
		4.15e-10 1228.353828828 4731.641143642 854844.4115454

		4.2e-10 757.7509695559 4612.90483013 854848.1301558

		4.264141463845e-10 201.5874228698 4411.171735 854852.3907921

		
4.3e-10 -85.25766152176 4277.417756696 854854.5533078

		4.35e-10 -455.5606483118 4069.468326037 854857.3324893

		4.4e-10 -790.7981617986 3840.210330287 854859.8545172

		4.461460213042e-10 -1155.121241614 3535.236626584 854862.6384996

		
4.5e-10 -1356.519508354 3333.732217503 854864.2307563

4.55e-10 -1587.379226921 3063.66982848 854866.1328354

		4.609120001281e-10 -1817.076592256 2736.073560918 854868.1569338

		4.65e-10 -1949.442823568 2506.827269924 854869.4317383

		4.702740140237e-10 -2089.241660629 2210.761811416 854870.9326452

		
		4.75e-10 -2186.37975409 1947.459973054 854872.1549735

		4.8e-10 -2261.048448134 1673.440616022 854873.3399352

		4.855009808709e-10 -2313.445529295 1379.810570341 854874.5202365

		
4.9e-10 -2334.077097519 1147.46798744 854875.3969446

4.95e-10 -2335.361997751 898.8836365931 854876.289817

		5.030081047963e-10 -2294.187712346 525.9028630219 854877.5611076

		5.05e-10 -2276.687843912 438.3148039721 854877.8522221

		5.111715517545e-10 -2206.064450494 181.20022577 854878.6889814

		
		5.15e-10 -2150.88154779 32.94766009108 854879.1641807

		5.2e-10 -2067.377289571 -147.280601658 854879.7407999

5.25e-10 -1972.732383159 -312.1772196002 854880.2705814

		5.322051016559e-10 -1820.190019791 -521.9068232282 854880.9682183

		
		5.35e-10 -1756.958623914 -594.3341992209 854881.2189606

		5.4e-10 -1639.560663795 -711.7922306941 854881.6429951

5.45e-10 -1517.829481148 -813.7746622676 854882.0387218

5.517482591246e-10 -1349.275959515 -927.6812801498 854882.5347988
5.56071273339e-10 -1240.198802628 -986.6819890398 854882.8295696
5.607149066441e-10 -1123.208107379 -1038.282523933 854883.1283225

		5.65e-10 -1016.19931599 -1075.93366102 854883.3910349

		5.7e-10 -893.4615932749 -1108.129269341 854883.6804673

		5.75e-10 -773.8457161127 -1128.504257928 854883.9509597

		5.8e-10 -658.2996581576 -1137.590462097 854884.2078171

5.85e-10 -547.5242899654 -1136.620940076 854884.4516429

5.92233502777e-10 -396.9600807443 -1119.176148848 854884.7792712
5.986841957366e-10 -273.8721149451 -1088.966302401 854885.0514447

6e-10 -249.9785762601 -1081.474047738 854885.1045002

6.05e-10 -163.2405875641 -1049.139889152 854885.2956893

		6.118422383709e-10 -55.67482306534 -995.5570466436 854885.5422388

		
		6.15e-10 -10.3641337266 -967.8730790797 854885.6488043

		6.2e-10 55.51939360993 -920.7087396526 854885.8076731

		6.25e-10 114.5161873434 -870.3283820109 854885.95824

		6.3e-10 165.8375475 -817.2107973705 854886.1005522

6.367935690796e-10 224.5468546052 -742.4381233573 854886.2795999
6.418678531805e-10 260.8431557234 -685.5456331348 854886.4024818
6.495071111918e-10 303.29339902 -599.3060134009 854886.57039

6.5e-10 305.5231657987 -593.7517076662 854886.5807286

		6.55e-10 325.0965549265 -537.7857039102 854886.6821522

		6.6e-10 339.0665773261 -482.8822686762 854886.7747782

		6.70036939419e-10 351.7149167678 -377.3662792294 854886.9414096

		
		6.75e-10 351.0219472849 -328.1496074951 854887.0127802

		6.8e-10 346.0220471315 -281.047645475 854887.0791348

		6.85e-10 337.3337864394 -236.5797423843 854887.1403603

		6.9e-10 325.4610701842 -194.8848162124 854887.1957434

		6.95e-10 310.7180166759 -156.131273445 854887.2458739

		7e-10 293.4760050679 -120.3526990644 854887.291164

		7.05e-10 273.8626452911 -87.90882996503 854887.3298054

		7.1e-10 252.3373925026 -58.79988903633 854887.3644401

		7.15e-10 229.420160903 -32.91192857819 854887.3950563

		7.2e-10 205.4671616784 -10.02862985986 854887.4218093

		7.25e-10 180.6511876084 9.770693132972 854887.4441928

		7.3e-10 155.4017006202 26.31279473121 854887.4629529

		7.35e-10 130.0096029105 39.92367988174 854887.4789056

		7.4e-10 104.6911499779 50.90124146825 854887.4921185

		7.552045527602e-10 30.10973553289 69.12019662175 854887.5183168

		
7.6e-10 7.928463274972 70.40567584813 854887.5226966

		7.65e-10 -14.29355513003 69.77916717028 854887.5247683

		7.7e-10 -35.40649793009 67.36142871944 854887.5257524

		7.75e-10 -55.22211355005 63.16805508015 854887.5248674

		7.8e-10 -73.81080641139 57.49744502891 854887.5235159

		7.85e-10 -91.04053933464 50.54118141651 854887.5207641

		7.9e-10 -106.7601880233 42.40194205379 854887.5177482

		7.95e-10 -120.9742170994 33.328996466 854887.5132602

		8e-10 -134.1399751998 23.67920427769 854887.5081826

8.05e-10 -145.9558065726 13.38347345531 854887.502935

8.073511491464e-10 -150.9370743354 8.303892294937 854887.5003268

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_parameters/data_slow.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

0 608111.8318204 0 608111.8318204

5.006279744776e-12 561537.7900844 95567.17228343 639960.3951849
1.000937853288e-11 496617.0407323 176236.905521 667823.1820062
1.500504345533e-11 418949.9485183 237175.0264544 694167.4807492

2e-11 334295.9943481 276300.1763714 718740.0136021

2.501374667407e-11 248886.0719001 293591.8958681 740320.0206729
3.001330970956e-11 169878.3147102 291076.290134 758135.1978542
3.500162469096e-11 102374.2344915 272986.3719293 772582.8491138
4.000777278397e-11 48936.52282441 244337.0907925 784508.1231105

		4.5e-11 10539.83752016 210457.557917 794493.6119543

		5e-11 -14173.36990676 175666.9473019 802999.6923459

5.500607487054e-11 -27418.6370393 143369.0676856 810252.8789845
6.000883567873e-11 -31962.52055526 115863.1098148 816397.9089579
6.500314567867e-11 -30688.47246195 94300.51676649 821571.6546597
7.000814147163e-11 -26197.07421538 78811.76249382 825926.1020115
7.501047123109e-11 -20649.56315061 68945.71415908 829570.7552493
8.001845123949e-11 -15652.04914218 63706.39695661 832622.7478807
8.501271958003e-11 -12279.20899828 61879.04675067 835171.8877043
9.001733412281e-11 -11065.51585084 62177.07871087 837320.3504787

9.5e-11 -12136.72280007 63422.16021183 839132.6602206

		1.000107121219e-10 -15304.58145782 64644.27353092 840691.3509463

		1.05e-10 -20113.32375914 65095.1082484 842033.2523168

		1.100320632912e-10 -26071.12962064 64290.87535727 843217.3569149

		1.15e-10 -32450.17996467 62024.01249804 844253.406246

1.200211126158e-10 -38830.14561319 58223.11572052 845193.1151582
1.250174488586e-10 -44628.55534934 53077.79336959 846041.0542595

1.3e-10 -49498.97089394 46849.80738765 846814.26146

1.350064851839e-10 -53235.87380121 39813.02574108 847527.7844539
1.400021587648e-10 -55693.44388302 32358.80940952 848182.3258768
1.450215861684e-10 -56877.98545085 24767.81916504 848785.9589461

1.5e-10 -56861.76498729 17427.74338719 849333.8614532

1.55011341278e-10 -55790.97893264 10462.88475677 849836.7896137
1.600253084379e-10 -53841.92157294 4089.564196395 850293.9178372

1.65e-10 -51233.5295803 -1541.378229525 850704.9906256

		1.700269573603e-10 -48106.51326604 -6483.602503793 851080.8105061

		1.75e-10 -44698.57517301 -10633.83845117 851416.9608878

1.800133644353e-10 -41093.49798712 -14110.45001008 851723.4734969
1.850102685828e-10 -37447.72047357 -16929.58876249 851999.9866498

1.9e-10 -33841.39886072 -19174.07116267 852250.2999443

		1.95e-10 -30321.14472172 -20928.05961473 852478.0487211

		2e-10 -26930.48945201 -22260.00803132 852685.1638282

		2.05e-10 -23687.37049746 -23235.61929611 852873.8172183

		2.1e-10 -20596.96550976 -23910.11104894 853045.9014873

2.15e-10 -17656.58526728 -24327.52438618 853203.0596532

		2.200104667505e-10 -14854.08586026 -24521.57403092 853347.0132245

		
		2.25e-10 -12199.59732184 -24516.23178316 853478.1516951

		2.3e-10 -9670.519546504 -24329.7190195 853598.4359977

		2.350038256528e-10 -7268.03440325 -23974.43828217 853708.6378737

		
2.4e-10 -4997.828524656 -23461.70146633 853809.386443

2.45e-10 -2857.717093068 -22799.8755383 853901.71266

		2.500200622242e-10 -847.0256420728 -21995.62550715 853986.5677016

		
		2.55e-10 1004.314642779 -21070.36120911 854063.6368518

		2.6e-10 2712.713437685 -20026.43208835 854134.4880006

		2.650105835689e-10 4267.02634039 -18879.14407323 854199.4750324

		2.7e-10 5652.912154852 -17652.07767025 854258.7062028

2.750150114677e-10 6879.833765948 -16350.71813603 854313.1943968
2.800249884683e-10 7938.315774899 -15000.33568955 854363.0021725

2.85e-10 8825.194212099 -13627.09844651 854408.2676395

2.900256952095e-10 9558.377712762 -12224.42272509 854450.1036942
2.950614607944e-10 10134.64352897 -10819.79470649 854488.4274841
3.000526882807e-10 10556.50496132 -9443.405753928 854523.1550313

3.05e-10 10836.7321091 -8107.729630362 854554.6500749

3.100631681599e-10 10991.03807079 -6782.075613478 854584.1025712
3.150172937663e-10 11022.7752912 -5535.216683688 854610.4242694

3.2e-10 10946.52648983 -4339.416456097 854634.6206782

		3.25e-10 10771.89981236 -3204.736256679 854656.7912861

		3.3e-10 10509.94239953 -2140.521552876 854677.0490566

3.35e-10 10171.24126876 -1150.576880312 854695.5319022

		3.400432752609e-10 9762.371627977 -229.9194217389 854712.5238361

		
		3.45e-10 9304.518811776 597.2498449178 854727.7456384

		3.5e-10 8795.705222728 1352.876778806 854741.7400111

		3.550443003948e-10 8243.633610098 2035.195937109 854754.5808324

		3.6e-10 7671.634787705 2628.116668705 854766.0702673

		3.650291729667e-10 7068.999020834 3152.810656762 854776.6922011

		3.7e-10 6458.652831817 3597.085568545 854786.2546371

3.750464148595e-10 5830.953965796 3974.945019345 854795.0940486
3.800356377085e-10 5208.659285855 4278.829706478 854803.048555
3.850069202666e-10 4592.63180871 4515.769066239 854810.2658039

3.9e-10 3983.173929789 4691.030110465 854816.8655386

		3.95e-10 3386.944603687 4807.217810465 854822.8785743

		4e-10 2809.059854052 4867.970753191 854828.348159

		4.050360671101e-10 2249.369397936 4877.268223885 854833.3560802

		4.1e-10 1722.897000023 4839.674209082 854837.8438072

		4.150207761159e-10 1218.634515191 4758.755895558 854841.9699432

		4.2e-10 748.8593780733 4640.236909036 854845.6892932

		4.250063741157e-10 308.7731872379 4487.010091301 854849.0878354

		
4.3e-10 -96.62170668154 4304.452490641 854852.1684487

		4.35e-10 -468.0225198917 4096.156726477 854854.9723561

		4.4e-10 -804.347979972 3866.453736953 854857.5205544

		4.450779554732e-10 -1109.874042639 3615.349466714 854859.8720395

		
4.5e-10 -1371.538928752 3358.55591894 854861.9442538

		4.55e-10 -1603.155168166 3087.760500616 854863.8625607

		4.6e-10 -1801.024322365 2810.309439392 854865.6077155

4.65e-10 -1966.254935131 2529.368341763 854867.1987169

		4.700122939385e-10 -2100.363197996 2247.163201506 854868.6517561

		4.75e-10 -2203.932050627 1968.435646258 854869.9710201

		4.800410795712e-10 -2279.94584073 1691.297606449 854871.1884975

		
		4.85e-10 -2328.337074005 1425.302528597 854872.2840476

		4.9e-10 -2352.431884556 1165.676761931 854873.2953763

4.95e-10 -2353.634896256 916.3211939537 854874.2227457

		5.000191509644e-10 -2333.774307518 677.7823941154 854875.0777062

		
		5.05e-10 -2295.164350354 453.9289351432 854875.8570756

		5.1e-10 -2239.458448608 243.0688446012 854876.5782926

5.15057385737e-10 -2167.834277266 44.70168751719 854877.2505341
5.201398871809e-10 -2082.39753654 -138.9643028194 854877.8743869

5.25e-10 -1989.894551911 -299.4866326175 854878.4255336

		5.300370070006e-10 -1884.734292532 -450.1267761699 854878.9570293

		
		5.35e-10 -1773.582255286 -582.8069401846 854879.4423527

		5.4e-10 -1655.733959613 -700.840716035 854879.8987099

		5.45e-10 -1533.570984987 -803.3806987988 854880.3233939

		5.5e-10 -1408.601037201 -890.8065290393 854880.7192305

5.55e-10 -1282.223208895 -963.5886058622 854881.0883117

5.600305682598e-10 -1154.961102377 -1022.674056999 854881.4380942
5.650137252622e-10 -1029.961550247 -1067.831675763 854881.7634774
5.700131362599e-10 -906.6882777636 -1100.473605734 854882.0689075

		5.75e-10 -786.8162127288 -1121.15244858 854882.3533357

		5.8e-10 -670.5713793629 -1130.848788565 854882.621516

5.85e-10 -559.0259037529 -1130.30771529 854882.8721482

		5.900271088939e-10 -452.2152479416 -1120.404980424 854883.1117478

		
		5.95e-10 -352.4189407903 -1102.107333668 854883.3279936

		6e-10 -258.3350892208 -1076.220869443 854883.5348621

6.05e-10 -170.8691617393 -1043.662568071 854883.7304738

		6.100140906151e-10 -90.06849001685 -1005.166984246 854883.913019

		
		6.15e-10 -16.77208380568 -961.9051225733 854884.0775784

		6.2e-10 49.62990785561 -914.4238430619 854884.2345152

		6.25e-10 109.0126847966 -863.6707301548 854884.3850264

		6.3e-10 161.2410632906 -810.2806883707 854884.5223159

6.35e-10 206.5025420359 -755.0173753943 854884.6486423

		6.400515040951e-10 245.3482164065 -697.9779104919 854884.7628754

		
		6.45e-10 277.0033305764 -641.5797947787 854884.8722748

		6.5e-10 302.7313414616 -584.5904532706 854884.9773074

		6.55071056112e-10 322.6542470457 -527.3310005559 854885.0740177

		
6.6e-10 336.4787324708 -472.6745855627 854885.1630492

		6.65e-10 345.5197443755 -418.580302168 854885.2650299

		6.7e-10 349.4664173152 -366.2672394087 854885.3559573

6.75e-10 348.8167447166 -316.0554311471 854885.4345989

		6.80133477485e-10 343.7361951376 -267.0335082596 854885.5027885

		
		6.85e-10 335.2069401467 -223.1695810431 854885.5563234

		6.9e-10 323.0862686909 -180.9491680618 854885.6012507

		6.95e-10 307.9883760701 -141.7461368968 854885.6373772

		7e-10 290.3285970094 -105.6400192697 854885.6663005

7.05e-10 270.4588476749 -72.73631258442 854885.6894303

		7.101333717777e-10 248.1328530119 -42.38022645683 854885.7079618

		
		7.15e-10 225.5456090649 -16.78605726076 854885.721185

		7.2e-10 201.2514231139 6.325448967345 854885.7307178

		7.250067899188e-10 176.14685532 26.27038668814 854885.7374941

		
7.3e-10 150.6428227799 43.1352303262 854885.7490086

		7.35e-10 124.8584799881 57.39595866793 854885.7795538

		7.4e-10 99.05055127492 68.77145187661 854885.8065841

		7.45e-10 73.47223630979 77.44585790661 854885.8282016

		7.5e-10 48.34959859622 83.54003560213 854885.8434443

		7.55e-10 23.88000938236 87.22745118242 854885.852661

		7.6e-10 0.2519465806649 88.63877383968 854885.8564592

7.65e-10 -22.37893741254 87.96167206039 854885.8556966

		7.702191778667e-10 -44.80222974017 85.24249628384 854885.8509661

		
		7.75e-10 -64.17224844211 81.13698172474 854885.8439323

		7.8e-10 -83.14351959409 75.36362566652 854885.8345692

		7.85e-10 -100.7076083366 68.23805397086 854885.8239548

		7.9e-10 -116.8308874321 59.96020895991 854885.8124682

		7.95e-10 -131.4870621813 50.71134452138 854885.8005253

		8e-10 -144.6764405887 40.66946055803 854885.7883254

8.052199047866e-10 -156.8677742593 29.50707487984 854885.7754654
8.077712356652e-10 -162.2338187712 23.8490319856 854885.7692078

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_parameters/iterations.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

		ncol bar_fast step | tail -1

		512

		ncol bar_normal step | tail -1

		2909

		ncol bar_slow step | tail -1

		85945

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

example_parameters/data_fast.html

 Navigation

 		
 index

 		Nmag 0.2 documentation »

0 608111.8318204 0 608111.8318204

5e-12 561612.998177 95438.82072855 639933.3707495

		8.044426005213e-12 523972.6947721 146670.0756921 657137.278776

		1e-11 496778.3793181 176068.0395231 667788.115288

		1.056196515496e-11 488583.8518733 183965.3057057 670810.2147913

		1.5e-11 419110.8513261 237077.1432011 694139.1702564

		1.925669768243e-11 347222.5733302 271848.0131428 715225.9803674

		2e-11 334440.2500355 276266.4531797 718715.6851333

		2.29732092703e-11 283432.8183208 289109.8100339 731948.9318807

		2.5e-11 249300.8549613 293578.7254445 740240.2130142

		2.707724336191e-11 215395.3451092 294782.224117 748095.9850893

		3e-11 170303.7591705 291190.4641065 758077.9063684

		3.169102655236e-11 145940.5171542 286594.3925831 763316.6891561

		3.5e-11 102591.4041051 273146.2376403 772566.2151227

		3.577243361909e-11 93360.95679203 269286.1298069 774554.8785035

		4e-11 49145.46772041 244624.7724538 784479.786539

		4.104743900573e-11 39851.18014645 237804.6588678 786714.6515882

		4.5e-11 10587.15947211 210732.7880666 794472.7407858

		4.625807484422e-11 3121.297802903 201912.7999573 796737.9845328

		5e-11 -14237.03598214 175963.5071244 802970.7725864

		5.245155093468e-11 -22047.10734626 159655.5500287 806664.7214927

		5.5e-11 -27576.41691805 143673.6690551 810207.8344552

		5.602414059054e-11 -29129.5545759 137582.259698 811548.955629

		6e-11 -32184.64779749 116093.5334255 816347.0403809

		6.125040265812e-11 -32317.08093625 110095.4942579 817728.4441265

		6.5e-11 -30959.16669468 94409.97882781 821531.7413978

		6.749758405127e-11 -28983.96184731 85881.71538873 823802.7401487

		7e-11 -26485.21056768 78830.49565606 825886.2460943

		7.041273294026e-11 -26035.10905128 77821.5790326 826210.1545866

		
		7.5e-11 -20896.89605276 68906.43413003 829529.1319009

		8e-11 -15871.19814309 63571.43972852 832586.6463682

8.04054607071e-11 -15520.15443866 63308.75993945 832810.8864734
8.390573952617e-11 -12992.82848716 61877.14719076 834619.6531055

8.5e-11 -12407.40954117 61695.05830488 835141.3455111

8.596166783752e-11 -11979.62824906 61621.69544488 835583.708454
8.756444756673e-11 -11453.07036275 61652.36438784 836289.433763
8.916722729593e-11 -11164.30179287 61839.5547837 836957.9243753

9e-11 -11108.97076808 61985.82124669 837291.3758095

9.038332162477e-11 -11105.31908196 62062.3953999 837441.7804138
9.134162568669e-11 -11155.76484533 62275.39349461 837809.5740057
9.229992974862e-11 -11290.75930047 62513.14584696 838166.0272061
9.377378919923e-11 -11671.83275971 62912.08376434 838691.7471154

9.5e-11 -12126.47703921 63255.28528784 839112.1555301

9.568471618668e-11 -12435.22127357 63446.68148533 839340.1290339
9.826926323367e-11 -13942.43063093 64125.27870865 840158.531725

1e-10 -15231.81906899 64504.19357509 840671.6685818

1.001800085381e-10 -15377.94511958 64538.79034301 840723.5738357
1.010800512288e-10 -16140.6331833 64695.5261488 840979.0462795
1.019800939194e-10 -16954.15616322 64822.9778143 841228.0351511
1.028801366101e-10 -17815.40211637 64917.91298636 841470.785072
1.037801793007e-10 -18720.95537214 64977.62081982 841707.5172529
1.046802219913e-10 -19667.50077565 64999.4268661 841938.4896324

1.05e-10 -20013.04781861 64997.57579402 842019.2049202

1.054193084116e-10 -20473.02205015 64987.33745074 842124.0169994
1.062734539373e-10 -21433.03141118 64937.95335005 842333.9292664
1.073605467227e-10 -22695.12762462 64818.19484354 842594.4709975
1.084476395081e-10 -23996.66084583 64632.05743293 842847.9290084
1.095347322935e-10 -25331.42502887 64377.26490064 843094.6247697

1.1e-10 -25911.23702034 64246.81362962 843198.1843354

1.103081598146e-10 -26298.35618099 64151.54206002 843265.9764928
1.118796048041e-10 -28297.9282076 63566.56708312 843603.9560797

1.15e-10 -32327.62912727 61961.58424187 844240.8625577

		1.198306582169e-10 -38451.33155115 58337.93549256 845150.4715492

		1.2e-10 -38659.57967724 58187.8774217 845180.8870523

		1.242203892237e-10 -43599.16189648 53965.92605856 845906.5563416

		1.25e-10 -44451.60202978 53090.88253001 846034.3288129

		1.342874776142e-10 -52627.79658014 40946.06905701 847427.8535587

		
		1.35e-10 -53087.66956046 39915.07106181 847525.6078738

		1.4e-10 -55581.0322024 32490.76881886 848180.3738912

		1.430087562919e-10 -56465.23163941 27958.55936098 848549.0874982

		
		1.45e-10 -56803.91766143 24964.5504635 848781.7672114

		1.5e-10 -56838.07201703 17600.4300127 849331.079784

		1.510175125839e-10 -56709.68430122 16143.5707016 849436.8837571

		
		1.55e-10 -55811.37713317 10636.84706361 849832.3036122

		1.6e-10 -53905.85442137 4259.347869455 850288.5803441

		1.65e-10 -51318.5427363 -1423.910517354 850702.600591

		1.7e-10 -48239.01925796 -6374.7151003 851075.2029888

1.75e-10 -44824.71143279 -10583.14256354 851413.0039792

		1.790422360128e-10 -41933.26487481 -13472.33137923 851662.4722789

		
1.8e-10 -41234.51388968 -14090.56965765 851718.6752565

1.85e-10 -37573.11344909 -16940.89627778 851995.5590254

		1.859431541883e-10 -36882.56933429 -17410.46312818 852044.7830005

		1.9e-10 -33937.7649831 -19207.77079249 852246.5233812

		1.943979505335e-10 -30817.06424645 -20784.7502902 852448.1514864

		
		1.95e-10 -30396.87696825 -20972.7764347 852474.42869

		2e-10 -26985.86875896 -22307.03128889 852681.4797077

2.05e-10 -23726.04729879 -23279.25636277 852870.1590581

		2.091729117722e-10 -21136.51679148 -23836.53007087 853014.2239913

		2.1e-10 -20636.29406664 -23924.66606445 853041.6590673

		2.14729909162e-10 -17860.90204207 -24294.07871715 853191.0595458

		2.15e-10 -17705.6623821 -24310.25478309 853199.3806163

2.184769230458e-10 -15754.31847952 -24448.2119775 853301.5110307
2.198025598815e-10 -15028.87470081 -24474.0537782 853338.7889888

2.2e-10 -14921.02849678 -24477.6737751 853344.3826534

		2.25e-10 -12273.56980003 -24452.32812962 853477.4040839

		2.3e-10 -9746.167811907 -24266.25913319 853599.5703682

		2.316731418825e-10 -8929.131310257 -24166.67458733 853638.0123017

		2.35e-10 -7347.780545134 -23914.71383143 853710.7513506

2.357943261231e-10 -6978.70206155 -23844.12050904 853727.4359243
2.393411947412e-10 -5378.45968127 -23472.74835315 853798.5937455

2.4e-10 -5088.212562965 -23395.87130625 853811.4137127

		2.482172019822e-10 -1670.921071832 -22225.75461678 853958.6243337

		2.5e-10 -975.2354724005 -21928.47851793 853988.3174678

		2.616919777456e-10 3124.4750505 -19611.57720482 854160.4000295

		2.65e-10 4131.952134268 -18854.45310722 854202.5177073

		2.928689307317e-10 9812.245669033 -11528.06437962 854475.1183639

		2.95e-10 10045.40672067 -10938.42962906 854489.951227

		3.0658234527e-10 10857.64211997 -7796.80548187 854563.9160364

		
3.1e-10 10959.88813219 -6906.048142888 854583.4754008

3.15e-10 11007.2486254 -5644.105378756 854610.0793546

		3.206680612118e-10 10926.1848702 -4282.802424906 854637.6310538

		
		3.25e-10 10777.86693487 -3298.285759083 854656.8753006

		3.3e-10 10523.88909739 -2227.405477781 854677.2956981

		3.336698950633e-10 10287.03660449 -1489.187566308 854691.0603578

		
		3.35e-10 10191.55770166 -1231.474081399 854695.8560352

		3.4e-10 9791.348113099 -312.2963679116 854712.8295986

		3.45e-10 9333.711386876 527.6311294365 854728.3988694

		3.5e-10 8828.34631495 1288.518674913 854742.6313568

3.55e-10 8284.125285406 1970.271842953 854755.6149316

		3.581279628043e-10 7927.619890322 2356.418931124 854763.0500192

		
3.6e-10 7709.301993929 2573.125065296 854767.3402266

		3.65e-10 7112.119900313 3099.121640104 854778.0089053

		3.7e-10 6499.562486094 3550.302912593 854787.8483911

		3.880860522055e-10 4261.900117189 4599.576070597 854816.5727703

		
3.9e-10 4029.739461814 4661.138096609 854819.0312478

3.95e-10 3433.120639886 4781.056811297 854825.0106369

		3.971095999387e-10 3188.209732446 4810.099391359 854827.39696

		
4e-10 2858.250000896 4835.429347412 854830.3972134

		4.05e-10 2307.047969677 4838.075912614 854835.3411084

		4.1e-10 1786.175478878 4793.124347676 854840.1370518

4.15e-10 1290.482366136 4710.497383405 854844.2038909

		4.31377045534e-10 -95.79602388916 4193.280740633 854855.0828759

		
		4.35e-10 -358.6387884402 4045.307263584 854857.2800606

		4.4e-10 -694.4688905384 3825.94361961 854859.3173305

4.45e-10 -997.3148552896 3589.637202615 854862.7033433

		4.496249333838e-10 -1247.906295641 3358.549925575 854864.6686339

		
4.5e-10 -1266.958203706 3339.320195807 854864.8167099

4.55e-10 -1494.54949353 3075.685259758 854866.5358208

		4.573582284445e-10 -1590.849066494 2948.843828403 854867.2835499

		
4.6e-10 -1689.771018915 2805.542011567 854868.1243781

		4.65e-10 -1846.996889358 2533.881294762 854869.8710054

		4.7e-10 -1986.951003655 2261.080643655 854871.4905459

		4.945029529884e-10 -2284.738818437 985.9037346564 854876.9096596

		
		4.95e-10 -2284.816141641 961.8753910079 854876.9600619

		5e-10 -2268.017396078 729.142069675 854877.4744821

		5.0798493304e-10 -2200.012004262 389.0915770022 854878.5457313

		
5.1e-10 -2178.059270751 307.3847581888 854878.7448202

		5.15e-10 -2111.984896892 116.4540290698 854879.3394116

		5.2e-10 -2032.353986088 -59.36025092116 854879.8595126

5.25e-10 -1943.354346742 -220.8158599498 854880.3746629

		5.433313022927e-10 -1551.019939704 -663.8950188005 854883.0948034

		
		5.45e-10 -1514.614517484 -697.2186141202 854882.7594083

		5.5e-10 -1400.497833664 -784.95844798 854883.0027268

5.55e-10 -1284.754539834 -856.0703404743 854882.6701346

		5.771044532445e-10 -785.8208072784 -1025.149443225 854883.2012756

		
5.8e-10 -723.6725543028 -1033.730050409 854883.4041308

5.85e-10 -619.1751904873 -1040.797231645 854884.1048941

		5.974736074523e-10 -388.132877477 -1012.515242556 854884.7548638

		

6e-10 -343.6651449223 -1004.185085656 854885.0005479

		6.05e-10 -261.9316217592 -979.9391320174 854885.0539755

		6.1e-10 -186.8959032491 -950.6013326981 854885.1898361

		6.125e-10 -149.8004749562 -935.2578520785 854885.3998863

		
		6.15e-10 -114.4672093761 -918.6878082357 854885.5348763

		6.2e-10 -50.77765611649 -880.24170362 854885.6947915

		6.25e-10 6.303474369361 -837.9819107935 854885.9082395

		6.3e-10 56.39078350005 -794.1692254931 854885.9921841

		6.35e-10 101.5079465159 -748.2909740223 854886.2139153

		6.4e-10 141.1990267128 -701.6191942162 854886.4272267

		6.498835852363e-10 204.525441392 -608.3384292624 854886.5366025

		
6.5e-10 205.1675738346 -607.2196593391 854886.5388981

		6.55e-10 229.4243010512 -559.2465997085 854886.623866

		6.6e-10 246.3825226428 -510.95370762 854886.7058906

		6.65e-10 258.5144022208 -464.1963314755 854886.7751929

		6.7e-10 267.5997328342 -418.9054263314 854886.8562886

		6.911976019688e-10 260.0841284766 -252.5191469369 854886.9766695

		
		6.95e-10 254.9928846311 -225.8335403542 854887.1299539

		7e-10 245.9968459613 -191.938872591 854887.1672449

		7.079398625696e-10 223.4894683822 -144.8341616617 854887.2409855

		7.1e-10 217.6320906849 -133.3042126836 854887.2503559

		7.289733345253e-10 150.888070138 -52.09373021762 854887.3100307

		7.3e-10 147.2632632168 -48.38231180458 854887.3189701

		7.499097939675e-10 70.4693765843 -1.250842778788 854887.4417566

		
7.5e-10 70.136270019 -1.091355439646 854887.4410942

		7.55e-10 51.58923908509 6.826390294758 854887.4397735

		7.6e-10 32.91625489667 12.35236571569 854887.4102901

		7.632321778618e-10 21.57566153766 13.97233180347 854887.4194808

		
		7.65e-10 15.36939315314 15.31132582103 854887.411014

		7.7e-10 -2.092720150042 17.87788344979 854887.4312701

		7.75e-10 -19.18556365504 18.34742911634 854887.3853492

		7.8e-10 -35.44402686805 17.41000687458 854887.4516619

		7.85e-10 -50.64332019569 15.15096885129 854887.3303995

		7.9e-10 -65.28321823003 11.91598785167 854887.5263907

		8.109406771475e-10 -113.4684493201 -14.31872557496 854887.5010125

		
		8.15e-10 -119.7809372305 -20.49227941857 854887.4018528

		8.2e-10 -127.9541224592 -26.7803755883 854887.5126766

		8.278055879949e-10 -138.0783862151 -38.1424349072 854887.4388582

		8.3e-10 -140.9224596086 -41.37651685645 854887.4163471

		8.511276818321e-10 -157.0177175713 -74.37958629978 854887.303044

		
		8.55e-10 -159.0037530349 -80.18485757183 854887.4311872

		8.6e-10 -160.0715004613 -87.60808778962 854887.1671531

		8.65e-10 -160.4816939365 -94.62712168958 854887.2563717

		8.7e-10 -160.599085448 -101.1742142102 854887.2577148

8.75e-10 -160.4498117895 -107.8207228179 854887.323811

 © Copyright 2016, Hans Fangohr, et. al..
 Created using Sphinx 1.3.5.

_images/cubes.png

_images/rough_wire_3D_view.png

_images/results.png
05

2e-10

4e-10

6e-10
t[s]

t
8e-10

t
1e-09

t
1.2e-09

1
1.4e-09

_images/nanodot-2.png
714

m_Py<> (X component)

-0.429

-0.143 0.143

0429

0714

_images/sphere1_h5_phi.png
phi<A>

-0.00328 -0.00234 ”.00 140 -8.000458 0.000482 0.00142 0.00236 0.00330

_images/nanodot-3.png
m_Py<> (X component)
-1.00 -0714 -0429 -0.143 0.143 0429 0714 1.00

_images/mesh2.png
10.0

9990300

_images/rec-space.png
omega (GHz)

500

400

300

200

100

Fourier transform

0
k (1/nm)

0.5

15

1.8e-0
1.6e-0
1.4e-0
1.2e-0
le-08
8e-09
6e-09
4e-09
2e-09

_images/smooth_wire_3D_view.png

_static/comment-bright.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_images/periodic2.png
M/Ms

2e-10

4e-10

6e-10

8e-10

1e-09
time (s)

1.20-09

1.40-09

1.60-09

1.8e-09

2609

_images/m-end.png
zcomponent of magnetisation
0.286 0.429 0.571 0714 0.857 1.00

0.143

0.00

_images/cube_hext_vs_m.png
M.x (A/m)

1.8e+06

1.6e+06

1.4e+06

1.2e+06

1e+06

800000

600000

400000

200000

~200000

5000

10000

15000 20000
H_ext.x (A/m)

25000

30000

35000

40000

